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1 Introduction

One of the main directions of research in Abstract Algebraic Logic has been

the study of the interplay between metalogical properties, on the logic side,

and algebraic properties of algebraizing classes of algebras, on the algebraic

side. In [5, 9, 14], e.g., a detailed study of the deduction-detachment prop-

erty for deductive systems is undertaken. Some other examples include

[7], that studies the amalgamation property, and [8] on the Maehara inter-

polation property. In [14], Font and Jansana also studied, alongside the

deduction detachment theorem, the congruence property, the properties of

conjunction and disjunction, and that of reductio ad absurdum. They are

interested, in particular, in how the presence of each of these, or combina-

tions of these, properties affects, and interacts with, the full models of a

sentential logic (see Section 2.4 of [14]).

In the context of π-institutions, Tarlecki [19] has been the first to have

studied some metalogical properties. His studies were continued, but in a

different context, by the author in [23]. This was following the introduc-

tion of algebraizable institutions in [20] (see also [21, 22]), which was, in

turn, extending work of Blok and Pigozzi [3, 4] on algebraizable deductive

systems. An overview of this and related work may be found in [10] and in

[15].

The theory of Font and Jansana [14] has been adapted by the author in a

series of papers to cover the case of institutional logics [24, 25, 26, 27, 28]. In

light of this work, the results of Font and Jansana on metalogical properties

are explored in the present paper in the context of π-institutions.

More precisely, in Section 2, a characterization is given of the 〈F, α〉-

min model of a finitary π-institution I for a surjective singleton translation

〈F, α〉 : I → SEN′. Min models were introduced for sentential logics in

[14] and the definition was adapted to the π-institution framework in [26].

The characterization, given here, parallels an analogous characterization

of the S-filter FiAS (X) on an algebra A = 〈A,LA〉 generated by a subset

X ⊆ A. It is the first time that finitary π-institutions are given special at-

tention as a class of π-institutions. Virtually all deductive systems studied

in the literature, however, are assumed to be finitary and this is a necessary

assumption for some of the results that will be formulated in the sequel.

In Section 3, a special equivalence system of a π-institution, the Frege

equivalence system, is introduced. It is then used to define the congruence
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property for a π-institution. Frege equivalence systems for sentential logics

and the congruence property were studied in [14]. The general notion of an

equivalence system for a π-institution was introduced in [24]. The notion

of a Frege equivalence system, as far as the author knows, appears in the

institution framework for the first time in the present paper.

In Section 4, the property of conjunction is studied. A similar property,

but from a slightly different point of view, was studied in [23]. In the

present work, the property of conjunction is adapted from the sentential

logic level in a way suitable to recapture analogs of some of the results of

[14] for π-institutions and their models.

In Section 5, the property of deduction-detachment is studied. A similar

version was introduced in [23]. Once more, the prototype for our work is the

analogous property studied in the sentential logic level [14]. This property

has been extensively studied before by many authors. Examples are the

papers [5, 9, 14].

In Section 6, the property of disjunction is explored. Again, a similar

form and some of its consequences were investigated in [23] and [14] contains

a study in the sentential logic framework.

Finally, Section 7 studies the reductio ad absurdum. This property had

not been introduced in [21]. [14], however, does contain an account of this

property at the sentential logic framework. Some of the results of [14] are

adapted in the π-institution level in this final section.

For bits and pieces of unexplained categorical notation, the reader is

encouraged to consult any of [2, 6, 18].

2 〈F, α〉-Min Models for Surjective 〈F, α〉

Recall from [16, 17] the definition of an institution and from [13] that of a

π-institution. A π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 consists of

(i) a category Sign whose objects are called signatures,

(ii) a functor SEN : Sign → Set, from the category Sign of signatures

into the category Set of sets, called the sentence functor and giving,

for each signature Σ, a set whose elements are called sentences over

that signature Σ or Σ-sentences and

(iii) a mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|,

called Σ-closure, such that
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(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1
(A)) ⊆ CΣ2

(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|, f ∈

Sign(Σ1,Σ2), A ⊆ SEN(Σ1).

A collection C = {CΣ}Σ∈|Sign| satisfying properties (iii)(a)-(d) will be re-

ferred to as a closure system on SEN.

A π-institution I = 〈Sign,SEN, C〉 is said to be finitary if, for every

Σ ∈ |Sign|, CΣ is a finitary closure operator on SEN(Σ) in the usual sense,

i.e., if, for every Σ ∈ |Sign|,Φ ⊆ SEN(Σ), CΣ(Φ) =
⋃

Ψ⊆ωΦ CΣ(Ψ), where

⊆ω denotes finite subset.

It is shown in the only, rather technical, result of the section that, if I

is a finitary π-institution and 〈F, α〉 : I → SEN′ is a surjective singleton

translation, then the closure system C ′min of the 〈F, α〉-min model I ′min =

〈Sign′,SEN′, C ′min〉 of I on SEN′ has an inductive characterization. It is

analogous to the standard characterization of the S-filter FiAS (X) generated

by a given subset X ⊆ A of an algebra A = 〈A,LA〉, given in Lemma 1.18

of [14].

Lemma 2.1. Suppose that I = 〈Sign,SEN, C〉 is a finitary π-institu-

tion and I ′min = 〈Sign′,SEN′, C ′min〉 an 〈F, α〉-min model of I, where

〈F, α〉 : I → SEN′ is a surjective singleton translation. Then, for all Σ ∈

|Sign|,Φ ⊆ SEN(Σ), C ′min
F (Σ)(αΣ(Φ)) =

⋃
n≥0X

n

F (Σ)(αΣ(Φ)), where

X0
F (Σ)(αΣ(Φ)) = αΣ(Φ)

and, for all n ≥ 0,

Xn+1
F (Σ)(αΣ(Φ)) =

{αΣ(χ) : (∃ Y ⊆ω SEN(Σ))(χ ∈ CΣ(Y ) and αΣ(Y ) ⊆ Xn

F (Σ)(αΣ(Φ))}.

Proof. We first show that

∞⋃

n=0

Xn

F (Σ)(αΣ(Φ)) ⊆ C ′min
F (Σ)(αΣ(Φ)).

This is done by showing, by induction on n ≥ 0, that

Xn

F (Σ)(αΣ(Φ)) ⊆ C ′min
F (Σ)(αΣ(Φ)).



FULL MODELS, FREGE SYSTEMS AND METALOGICAL PROPERTIES 35

If n = 0, then it is obvious that αΣ(Φ) ⊆ C ′min
F (Σ)(αΣ(Φ)).

Suppose Xk

F (Σ)(αΣ(Φ)) ⊆ C ′min
F (Σ)(αΣ(Φ)) and let φ′ ∈ Xk+1

F (Σ)(αΣ(Φ)).

Then, by definition, there exists φ ∈ SEN(Σ), Y = {y0, . . . , ym−1} ⊆ω

SEN(Σ), such that

• φ′ = αΣ(φ),

• φ ∈ CΣ(Y ) and

• αΣ(Y ) ⊆ Xk

F (Σ)(αΣ(Φ)).

These, taken together, give

φ′ = αΣ(φ)

∈ C ′min
F (Σ)(αΣ(Y ))

⊆ C ′min
F (Σ)(X

k

F (Σ)(αΣ(Φ)))

⊆ C ′min
F (Σ)(C

′min
F (Σ)(αΣ(Φ)))

= C ′min
F (Σ)(αΣ(Φ)).

It now suffices to show that C ′ = {
⋃

n≥0X
n

F (Σ)}Σ∈|Sign| is a closure system

on SEN′. Since I ′ = 〈Sign′,SEN′, C ′〉 will then be, by the finitarity of I,

an 〈F, α〉-model of I on SEN′, we will be able to conclude that C ′min ≤ C ′.

To show reflexivity, it suffices, by surjectivity, to show that, for all

Σ ∈ |Sign|,Φ ⊆ SEN(Σ), αΣ(Φ) ⊆ C ′
F (Σ)(αΣ(Φ)). But this is obvious by

the definition of C ′.

To show monotonicity, it suffices, by surjectivity, to show that, for all

Σ ∈ |Sign|,Φ ⊆ Ψ ⊆ SEN(Σ), C ′
F (Σ)(αΣ(Φ)) ⊆ C ′

F (Σ)(αΣ(Ψ)). This can be

accomplished by showing, by a routine induction on n, thatXn

F (Σ)(αΣ(Φ)) ⊆

Xn

F (Σ)(αΣ(Ψ)), for all n ≥ 0. The details are omitted.

For idempotency, we need to show, by surjectivity, that, for all Σ ∈

|Sign|,Φ ⊆ SEN(Σ), C ′
F (Σ)(C

′
F (Σ)(αΣ(Φ))) ⊆ C ′

F (Σ)(αΣ(Φ)). We do this

by first applying induction on n to show that, for all n ≥ 0,

XF (Σ)(X
n

F (Σ)(αΣ(Φ))) ⊆ Xn+1
F (Σ)(αΣ(Φ)). (1)

Then, we use Equation (1) to show that

Xk

F (Σ)(X
l

F (Σ)(αΣ(Φ))) ⊆ Xk+l

F (Σ)(αΣ(Φ)). (2)
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Finally, Equation (2) is used to conclude

Xn

F (Σ)(C
′
F (Σ)(αΣ(Φ))) = Xn

F (Σ)(
⋃

i≥0X
i

F (Σ)(αΣ(Φ)))

⊆
⋃

i≥0X
i

F (Σ)(αΣ(Φ))

= C ′
F (Σ)(αΣ(Φ)),

for all n ≥ 0.

Finally, for structurality, it may be shown, similarly, by induction on

n ≥ 0, that SEN(F (f))(Xn

F (Σ1)(αΣ1
(Φ))) ⊆ Xn

F (Σ2)(αΣ2
(SEN(f)(Φ))), for

all Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2) and Φ ⊆ SEN(Σ1). �

3 The Congruence Property

Let Sign be a category and SEN : Sign → Set be a functor. An axiom

system T is a collection T = {TΣ : Σ ∈ |Sign|}, such that

• TΣ ⊆ SEN(Σ), for all Σ ∈ |Sign|, and

• SEN(f)(TΣ1
) ⊆ TΣ2

, for all Σ1,Σ2 ∈ |Sign| and f ∈ Sign(Σ1,Σ2).

The collection of all axiom systems on SEN will be denoted by AxSys(SEN).

For all axiom systems T 1, T 2 on SEN, define

T 1 ≤ T 2 iff T 1
Σ ⊆ T 2

Σ, for all Σ ∈ |Sign|.

Let SEN : Sign → Set be a functor, C a closure system on SEN and T

an axiom system on SEN. Define CT = {CT
Σ : Σ ∈ |Sign|} by

CT
Σ(Φ) = CΣ(TΣ ∪ Φ), for all Φ ⊆ SEN(Σ).

Proposition 3.1. Given a functor SEN : Sign → Set, a closure sys-

tem C on SEN and an axiom system T on SEN, the collection CT =

{CT
Σ}Σ∈|Sign| is a closure system on SEN.

Proof. Properties (a) and (c) of a closure system are obvious. For (b),

suppose φ ∈ CT
Σ (CT

Σ (Φ)). Then φ ∈ CΣ(TΣ ∪CT
Σ (Φ)), whence

φ ∈ CΣ(TΣ ∪CΣ(TΣ ∪ Φ)) = CΣ(CΣ(TΣ ∪ Φ))

= CΣ(TΣ ∪ Φ)

= CT
Σ (Φ).
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Finally, for (d), let Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2),Φ ⊆ SEN(Σ1). Then

SEN(f)(CT
Σ1

(Φ)) = SEN(f)(CΣ1
(TΣ1

∪ Φ))

⊆ CΣ2
(SEN(f)(TΣ1

∪ Φ))

= CΣ2
(SEN(f)(TΣ1

) ∪ SEN(f)(Φ))

⊆ CΣ2
(TΣ2

∪ SEN(f)(Φ))

= CT
Σ2

(SEN(f)(Φ)).

�

Let Sign be a category, SEN : Sign → Set be a functor and C a closure

system on SEN. Define Λ(C) = {ΛΣ(C) : Σ ∈ |Sign|}, where

ΛΣ(C) = {〈φ, ψ〉 ∈ SEN(Σ)2 : CΣ(φ) = CΣ(ψ)}.

Recall, before Proposition 3.2, the notion of an equivalence system on

SEN : Sign → Set from [24].

Proposition 3.2. Let Sign be a category, SEN : Sign → Set be a

functor and C a closure system on SEN. Then Λ(C) is an equivalence

system on SEN.

Proof. It is clear from the definition that the relation ΛΣ(C) is an

equivalence relation, for all Σ ∈ |Sign|. To show that Λ(C) is an equiva-

lence system, suppose that Σ1,Σ2 ∈ Sign, f ∈ Sign(Σ1,Σ2) and 〈φ, ψ〉 ∈

ΛΣ1
(C). Then CΣ1

(φ) = CΣ1
(ψ), whence

SEN(f)(φ) ∈ SEN(f)(CΣ1
(φ))

= SEN(f)(CΣ1
(ψ))

⊆ CΣ2
(SEN(f)(ψ)),

and, therefore CΣ2
(SEN(f)(φ)) ⊆ CΣ2

(SEN(f)(ψ)). Thus, by symmetry,

we obtain CΣ2
(SEN(f)(φ)) = CΣ2

(SEN(f)(ψ)). Hence, by the definition of

ΛΣ2
(C), 〈SEN(f)(φ),SEN(f)(ψ)〉 ∈ ΛΣ2

(C) and Λ(C) is in fact an equiva-

lence system on SEN. �

The equivalence system Λ(C) is referred to as the Frege equivalence

system of C on SEN. The Frege equivalence at the sentential logic level

has been studied extensively in the past. For examples and more references

on the subject see, for instance, [14, 11, 1].
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The Frege operator of C on SEN is the mapping ΛC : AxSys(SEN) →

Eqv(SEN) defined by

ΛC(F ) = Λ(CF ), for all F = {FΣ}Σ∈|Sign| ∈ AxSys(SEN).

If I = 〈Sign,SEN, C〉, then Λ(I) and ΛI(F ) will be alternative notations

for Λ(C) and ΛC(F ), respectively.

An easy observation is that the Frege operator of C on SEN is mono-

tonic.

Proposition 3.3. ΛC : AxSys(SEN) → Eqv(SEN) is order preserving,

i.e., F ≤ G implies ΛC(F ) ≤ ΛC(G).

Proof. If 〈φ, ψ〉 ∈ ΛC(F )Σ, then we have CF
Σ (φ) = CF

Σ (ψ). Therefore

CΣ(FΣ ∪ {φ}) = CΣ(FΣ ∪ {ψ}). Thus φ ∈ CΣ(FΣ ∪ {ψ}), whence, since

F ≤ G, φ ∈ CΣ(GΣ ∪ {ψ}) and therefore CΣ(GΣ ∪ {φ}) ⊆ CΣ(GΣ ∪ {ψ}).

Now, by symmetry, it follows that CΣ(GΣ ∪ {φ}) = CΣ(GΣ ∪ {ψ}). This

proves that 〈φ, ψ〉 ∈ ΛC(G)Σ. Hence ΛC(F ) ≤ ΛC(G). �

Let I = 〈Sign,SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. Since a logical N -congruence system θ of I (see

[24]) is defined to be an N -congruence system on SEN, such that, for all

Σ ∈ |Sign|,

〈φ, ψ〉 ∈ θΣ implies CΣ(φ) = CΣ(ψ),

it is obvious that the collection of all logical N -congruences of I is the

collection of all N -congruences on SEN that are signature-wise included in

the Frege equivalence system Λ(I).

Proposition 3.4. Given a π-institution I = 〈Sign,SEN, C〉 and N a

category of natural transformations on SEN,

LConN (I) = {θ ∈ ConN (SEN) : θ ≤ Λ(I)}.

As a consequence the Tarski N -congruence system Ω̃N (I) [24] is the

largest N -congruence system on SEN under the signature-wise inclusion

that is included in Λ(I).

Corollary 3.5. Let I = 〈Sign,SEN, C〉 be a π-institution and N a

category of natural transformations on SEN. Ω̃N (I) is the ≤-greatest logical

N -congruence of I included in Λ(I).
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Given a π-institution I = 〈Sign,SEN, C〉 and a category N of natural

transformations on SEN, I is said to have the N -congruence property

if Λ(I) ∈ ConN (SEN), i.e., if Λ(I) = Ω̃N (I).

Thus, an N -reduced π-institution I = 〈Sign,SEN, C〉 has the N -con-

gruence property if and only if, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

CΣ(φ) = CΣ(ψ) implies φ = ψ.

Bilogical morphisms between π-institutions carry Frege equivalence sys-

tems to Frege equivalence systems. This fact is formally expressed in the

following lemma.

Lemma 3.6. Let I = 〈Sign,SEN, C〉, I ′ = 〈Sign′,SEN′, C ′〉 be two π-

institutions, N and N ′ categories of natural transformations on SEN and

SEN′, respectively, and 〈F, α〉 : I `se I ′ an (N,N ′)-bilogical morphism.

Then, for all Σ ∈ |Sign|, αΣ(ΛΣ(I)) = ΛF (Σ)(I
′).

Proof. Suppose that 〈φ, ψ〉 ∈ ΛΣ(I). Then CΣ(φ) = CΣ(ψ). Hence, ap-

plying 〈F, α〉, αΣ(CΣ(φ)) = αΣ(CΣ(ψ)). But, then, by Corollary 16 of [24],

we get C ′
F (Σ)(αΣ(φ)) = C ′

F (Σ)(αΣ(ψ)). This means that 〈αΣ(φ), αΣ(ψ)〉 ∈

ΛF (Σ)(I
′). Hence αΣ(ΛΣ(I)) ⊆ ΛF (Σ)(I

′).

Suppose, conversely, that 〈φ′, ψ′〉 ∈ ΛF (Σ)(I
′). Since 〈F, α〉 is surjective,

there exist φ, ψ ∈ SEN(Σ), such that φ′ = αΣ(φ) and ψ′ = αΣ(ψ). Therefore

〈αΣ(φ), αΣ(ψ)〉 ∈ ΛF (Σ)(I
′). Thus, by the definition of Λ, C ′

F (Σ)(αΣ(φ)) =

C ′
F (Σ)(αΣ(ψ)), whence, by Corollary 15 of [24], CΣ(φ) = CΣ(ψ), i.e., 〈φ, ψ〉 ∈

ΛΣ(I). Hence 〈φ′, ψ′〉 = 〈αΣ(φ), αΣ(ψ)〉 ∈ αΣ(ΛΣ(I)) and ΛF (Σ)(I
′) ⊆

αΣ(ΛΣ(I)). �

The following result expresses formally the fact that bilogical morphisms

preserve the congruence property. This is the analog in the π-institution

context of Proposition 2.40 of [14]. Its proof uses Lemma 3.6.

Proposition 3.7. Let I = 〈Sign,SEN, C〉, I ′ = 〈Sign′,SEN′, C ′〉 be

two π-institutions, N and N ′ categories of natural transformations on SEN

and SEN′, respectively, and 〈F, α〉 : I `se I ′ an (N,N ′)-bilogical morphism.

Then I has the N -congruence property if and only if I ′ has the N ′-congru-

ence property.

Proof. By Theorem 21 of [24] we have that

Ω̃N
Σ (I) = α−1

Σ (Ω̃N ′

F (Σ)(I
′)), for every Σ ∈ |Sign|. (3)
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Suppose, first, that I ′ has the N ′-congruence property and that 〈φ, ψ〉 ∈

ΛΣ(I). Then, by Lemma 3.6, 〈αΣ(φ), αΣ(ψ)〉 ∈ ΛF (Σ)(I
′) = Ω̃N ′

F (Σ)(I
′).

Thus, by Equation (3), 〈φ, ψ〉 ∈ Ω̃N
Σ (I). Hence Λ(I) = Ω̃N (I) and I has

the N -congruence property.

Conversely, suppose that I has the N -congruence property and that

〈φ′, ψ′〉 ∈ ΛΣ′(I ′). Then, since 〈F, α〉 is surjective, there exists Σ ∈ |Sign|

and φ, ψ ∈ SEN(Σ), such that F (Σ) = Σ′ and αΣ(φ) = φ′, αΣ(ψ) =

ψ′. Therefore 〈αΣ(φ), αΣ(ψ)〉 ∈ ΛF (Σ)(I
′). Hence, again by Lemma 3.6,

〈φ, ψ〉 ∈ ΛΣ(I) = Ω̃N
Σ (I). Thus, by Equation (3),

〈αΣ(φ), αΣ(ψ)〉 ∈ Ω̃N ′

F (Σ)(I
′),

i.e., 〈φ′, ψ′〉 ∈ Ω̃N ′

Σ′ (I ′). Hence Λ(I ′) = Ω̃N ′

(I ′), which shows that I ′ has

the N ′-congruence property. �

Let I = 〈Sign,SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. I is said to be N -self-extensional if it has the

N -congruence property, i.e., if Λ(I) = Ω̃N (I). It is said to be fully N -

self-extensional if, every (N,N ′)-full model of I has the N ′-congruence

property, i.e., if, for all I ′ ∈ FModN (I), Ω̃N ′

(I ′) = Λ(I ′).

Proposition 3.8. Suppose that I = 〈Sign,SEN, C〉 is a π-institution

and N a category of natural transformations on SEN. Then I is N -self-

extensional if and only if, for all Σ ∈ |Sign|, σ : SENn → SEN in N and

all φi, ψi, i = 0, . . . , n− 1,

CΣ(φi) = CΣ(ψi), i < n, imply σΣ(~ψ) ∈ CΣ(σΣ(~φ)). (4)

Proof. First, suppose that I is N -self-extensional and consider Σ ∈

|Sign|, σ : SENn → SEN in N and φi, ψi, i < n, such that CΣ(φi) = CΣ(ψi),

for all i < n. Then, by the definition of the Frege equivalence system,

〈φi, ψi〉 ∈ ΛΣ(I) = Ω̃N
Σ (I). Therefore, since Ω̃N (I) is an N -congruence

system, we get 〈σΣ(~φ), σΣ(~ψ)〉 ∈ Ω̃N
Σ (I). Hence CΣ(σΣ(~φ)) = CΣ(σΣ(~ψ)).

Thus, σΣ(~ψ) ∈ CΣ(σΣ(~φ)).

Suppose, conversely, that Condition (4) holds and that φ, ψ ∈ SEN(Σ),

such that 〈φ, ψ〉 ∈ ΛΣ(I). Then, if Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and ~χ ∈

SEN(Σ′)n−1, we get, by Proposition 3.2,

CΣ′(SEN(f)(φ)) = CΣ′(SEN(f)(ψ))
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and, obviously, CΣ′(χi) = CΣ′(χi), for all i < n − 1. Hence, by Condition

(4),

CΣ′(σΣ′(SEN(f)(φ), ~χ)) = CΣ′(σΣ′(SEN(f)(ψ), ~χ)).

Thus, by Theorem 4 of [24], 〈φ, ψ〉 ∈ Ω̃N
Σ (I), and, therefore, I is N -self-

extensional. �

Proposition 3.8 has the following corollary characterizing fully N -self-

extensional π-institutions.

Corollary 3.9. Suppose that I = 〈Sign,SEN, C〉 is a π-institution

and N a category of natural transformations on SEN. I is fully N -self-

extensional if and only if every (N,N ′)-full model I ′ of I satisfies Condition

(4) with N replaced by N ′.

Proposition 3.7 and Proposition 5.12 of [25] yield the following propo-

sition, providing an alternative characterization of N -self-extensional π-

institutions in terms of their min models.

Proposition 3.10. A π-institution I = 〈Sign,SEN, C〉, with N a cat-

egory of natural transformations on SEN, is fully N -self-extensional if and

only if every (N,N ′)-min model of I has the N ′-congruence property.

It is obvious that every fully N -self-extensional π-institution is N -self-

extensional. For sentential logics, it was shown by Font and Jansana in [14]

and by Czelakowski and Pigozzi in [11, 12] that, under a variety of diverse

conditions, the converse is also true. But Babyonyshev [1] showed that the

converse is not true in general.

The following proposition is a partial analog of Proposition 2.43 of [14].

It states, roughly, that, given a π-institution I = 〈Sign,SEN, C〉, a cat-

egory N of natural transformations on SEN and two Σ-sentences φ and

ψ of I, φ and ψ are identified by the Lindenbaum-Tarski (I, N)-algebraic

system SENN of I (see [27]) if and only if they are deductively equivalent,

i.e., they generate the same Σ-closed sets.

Proposition 3.11. Let I = 〈Sign,SEN, C〉, with N a category of natu-

ral transformations on SEN, be an N -self-extensional π-institution. Then,

for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ Ω̃N
Σ (I) iff CΣ(φ) = CΣ(ψ).
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Proof. That 〈φ, ψ〉 ∈ Ω̃N
Σ (I) implies CΣ(φ) = CΣ(ψ) is always true,

by the definition of the Tarski N -congruence system of I. If, conversely,

CΣ(φ) = CΣ(ψ), then 〈φ, ψ〉 ∈ ΛΣ(I), whence, since I is N -self-extensional,

〈φ, ψ〉 ∈ Ω̃N
Σ (I). �

4 The Property of Conjunction

Let I = 〈Sign,SEN, C〉 be a π-institution and N a category of natu-

ral transformations on SEN. Recall from [23] that a natural transfor-

mation
∧

: PSEN2 → PSEN is called a conjunction for I if, for all

Σ ∈ |Sign|,Γ,∆ ⊆ SEN(Σ),

CΣ(Γ ∪ ∆) = CΣ(
∧

Σ

(Γ,∆)).

I is said to have conjunction if there exists a conjunction for I. It was

shown in Theorem 4.23 of [23] that every π-institution has conjunction,

where
∧

: PSEN2 → PSEN, given by

∧

Σ

(Γ,∆) = Γ ∪ ∆, for all Σ ∈ |Sign|,Γ,∆ ⊆ SEN(Σ),

is a conjunction for I.

In the present context, I will be said to have the property of N -

conjunction, or to have an N -conjunction, if there exists ∧ : SEN2 →

SEN in N , such that, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ),

CΣ(φ, ψ) = CΣ(φ ∧Σ ψ),

where, of course, φ ∧Σ ψ := ∧Σ(φ, ψ). In this case, I is said to have the

N -conjunction with respect to ∧ : SEN2 → SEN.

The following lemmas lift some well-known properties of the property of

conjunction from the abstract logic level to the π-institution level. The first

says that the property of conjunction is preserved by bilogical morphisms.

Lemma 4.1. Suppose I = 〈Sign,SEN, C〉, I ′ = 〈Sign′,SEN′, C ′〉 are

π-institutions, N,N ′ categories of natural transformations on SEN,SEN′,

respectively, and 〈F, α〉 : I `se I ′ an (N,N ′)-bilogical morphism from I to

I ′. Then I has an N -conjunction iff I ′ has an N ′-conjunction.
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Proof. Suppose that ∧ : SEN2 → SEN is an N -conjunction for I.

Then, by the (N,N ′)-epimorphic property of 〈F, α〉 : I `se I ′, there exists

a natural transformation ∧′ : SEN′2 → SEN′, such that, for all Σ ∈ |Sign|,

SEN′(F (Σ))2 SEN′(F (Σ))-

∧′
F (Σ)

SEN(Σ)2 SEN(Σ)-
∧Σ

?

α2
Σ

?

αΣ

αΣ(φ) ∧′
F (Σ) αΣ(ψ) = αΣ(φ ∧Σ ψ), for all φ, ψ ∈ SEN(Σ)2.

It will now be shown that ∧′ : SEN′2 → SEN′ is in fact an N ′-conjunction

for I ′. Let Σ′ ∈ |Sign′|, φ′, ψ′ ∈ SEN′(Σ′). Then, by the surjectivity of

〈F, α〉, there exists Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), such that Σ′ = F (Σ) and

φ′ = αΣ(φ), ψ′ = αΣ(ψ). Hence

C ′
Σ′(φ′ ∧′

Σ′ ψ′) = C ′
F (Σ)(αΣ(φ) ∧′

F (Σ) αΣ(ψ))

= C ′
F (Σ)(αΣ(φ ∧Σ ψ))

= αΣ(CΣ(φ ∧Σ ψ))

= αΣ(CΣ(φ, ψ))

= C ′
F (Σ)(αΣ(φ), αΣ(ψ))

= C ′
Σ′(φ′, ψ′).

The proof of the converse, i.e., that the existence of an N ′-conjunction ∧′

for I ′ implies the existence of an N -conjunction for I is very similar. �

Lemma 4.1 implies immediately the following result, yielding the equi-

valence of a π-institution and of its N -reduct with respect to the property

of conjunction. For relevant definitions see [24].

Corollary 4.2. Let I = 〈Sign,SEN, C〉 be a π-institution and N a

category of natural transformations on SEN. I has an N -conjunction iff

IN has an N -conjunction.

Next, it is shown that, if a π-institution I has conjunction with re-

spect to ∧, then, necessarily, the Frege equivalence system of I is a {∧}-

congruence system of I.

Lemma 4.3. Let I = 〈Sign,SEN, C〉 be a π-institution and N a

category of natural transformations on SEN. If I has an N -conjunction
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∧ : SEN2 → SEN, then the Frege equivalence system Λ(I) is a {∧}-

congruence system and, for every axiom system F = {FΣ}Σ∈|Sign| on SEN,

ΛC(F ) is also a {∧}-congruence system.

Proof. Suppose that Σ ∈ |Sign| and that φ0, φ1, ψ0, ψ1 ∈ SEN(Σ), such

that 〈φ0, ψ0〉, 〈φ1, ψ1〉 ∈ ΛΣ(I). Then, by the definition of the Frege equiv-

alence system, we obtain CΣ(φ0) = CΣ(ψ0) and CΣ(φ1) = CΣ(ψ1). There-

fore CΣ(φ0, φ1) = CΣ(ψ0, ψ1). Hence, by the property of ∧-conjunction,

CΣ(φ0∧Σφ1) = CΣ(ψ0∧Σψ1). This proves that 〈φ0∧Σφ1, ψ0∧Σψ1〉 ∈ ΛΣ(I),

whence Λ(I) is indeed a {∧}-congruence system.

The proof for ΛC(F ) is very similar and will be omitted. �

An alternative characterization of an N -conjunction for a π-institution

I is provided by the following

Lemma 4.4. A π-institution I has the N -conjunction property with

respect to ∧ : SEN2 → SEN in N if and only if, for all Σ ∈ |Sign|, φ, ψ ∈

SEN(Σ),

φ ∧Σ ψ ∈ CΣ(φ, ψ), φ ∈ CΣ(φ ∧Σ ψ) and ψ ∈ CΣ(φ ∧Σ ψ).

Proof. Straightforward from the definition of the property of an N -

conjunction ∧ : SEN2 → SEN. �

The property of having an N -conjunction is inherited by every model

via a surjective logical morphism. The following lemma formalizes this

result. Its proof is very similar to the proof of Lemma 4.1. We include

it with a slight twist as an illustration of the alternate characterization of

N -conjunction provided by Lemma 4.4.

Lemma 4.5. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and N

a category of natural transformations on SEN. If I has an N -conjunction

∧, then every (N,N ′)-model I ′ of I via a surjective (N,N ′)-logical mor-

phism 〈F, α〉 : I〉−seI ′ has an N ′-conjunction ∧′.

Proof. Suppose that ∧ : SEN2 → SEN is an N -conjunction for I.

Then, by the (N,N ′)-epimorphic property of 〈F, α〉 : I〉−seI ′, there exists
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a natural transformation ∧′ : SEN′2 → SEN′, such that, for all Σ ∈ |Sign|,

SEN′(F (Σ))2 SEN′(F (Σ))-

∧′
F (Σ)

SEN(Σ)2 SEN(Σ)-
∧Σ

?

α2
Σ

?

αΣ

αΣ(φ) ∧′
F (Σ) αΣ(ψ) = αΣ(φ ∧Σ ψ), for all φ, ψ ∈ SEN(Σ)2.

It suffices, by Lemma 4.4 and by symmetry, to show that, for all Σ′ ∈

|Sign′|, φ′, ψ′ ∈ SEN′(Σ′),

φ′ ∧′
Σ′ ψ′ ∈ C ′

Σ′(φ′, ψ′) and φ′ ∈ C ′
Σ′(φ′ ∧′

Σ′ ψ′).

Since 〈F, α〉 is surjective, there exists Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), such that

Σ′ = F (Σ), φ′ = αΣ(φ) and ψ′ = αΣ(ψ). Then, since ∧ is an N -conjunction

for I, we have, by Lemma 4.4,

φ ∧Σ ψ ∈ CΣ(φ, ψ) and φ ∈ CΣ(φ ∧Σ ψ).

Since 〈F, α〉 : I〉−seI ′ is a semi-interpretation, these immediately yield

αΣ(φ ∧Σ ψ) ∈ C ′
F (Σ)(αΣ(φ), αΣ(ψ)) and αΣ(φ) ∈ C ′

F (Σ)(αΣ(φ ∧Σ ψ)).

Thus

αΣ(φ) ∧′
F (Σ) αΣ(ψ) ∈ C ′

F (Σ)(αΣ(φ), αΣ(ψ)) and

αΣ(φ) ∈ C ′
F (Σ)(αΣ(φ) ∧′

F (Σ) αΣ(ψ)).

Hence, we finally get

φ′ ∧′
Σ′ ψ′ ∈ C ′

Σ′(φ′, ψ′) and φ′ ∈ C ′
Σ′(φ′ ∧′

Σ′ ψ′).

�

The following result is the analog of Proposition 2.46 of [14] for π-

institutions. Recall that, given a π-institution I = 〈Sign,SEN, C〉 and a

category N of natural transformations on SEN, by IN is denoted the N -

reduct of I and, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), by φN will be denoted the

sentence φ/Ω̃N
Σ (I) ∈ SENN (Σ).
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Proposition 4.6. Let I = 〈Sign,SEN, C〉 be a π-institution with an

N -conjunction ∧ : SEN2 → SEN. Then, every finitary (N,N ′)-model I ′

of I via a surjective (N,N ′)-logical morphism 〈F, α〉 : I〉−seI ′ that has the

N ′-congruence property is an (N,N ′)-full model of I.

Proof. Suppose 〈F, α〉 : I〉−seI ′ is a surjective (N,N ′)-logical mor-

phism onto a finitary I ′ that has the N ′-congruence property. It suffices

to show that the 〈F, πN ′

F
α〉-min (N,N ′)-model of I on SEN′N ′

I ′min =

〈Sign′,SEN′N ′

, C ′min〉 is such that C ′min = C ′N ′

.

Since I ′N ′

is an (N,N ′)-model of I on SEN′N ′

via 〈F, πN ′

F
α〉, we have

that C ′min ≤ C ′N ′

.

Conversely, let Σ ∈ |Sign′|,Φ′ ∪ {φ′} ∈ SEN′(Σ), such that φ′N
′

∈

C ′N ′

Σ (Φ′N ′

). Thus, by definition, φ′ ∈ C ′
Σ(Φ′). But I ′ is finitary, whence,

there exist ~φ′ = 〈φ′0, . . . , φ
′
n−1〉 ∈ SEN′(Σ)n, such that φ′ ∈ C ′

Σ(~φ′). Since

I has the N -conjunction property with respect to some ∧ : SEN2 → SEN,

by Lemma 4.5, I ′ has an N ′-conjunction ∧′ : SEN′2 → SEN′. Hence φ′ ∈

C ′
Σ(φ′0 ∧

′
Σ . . . ∧

′
Σ φ

′
n−1). Thus

C ′
Σ(φ′ ∧′

Σ φ
′
0 ∧

′
Σ . . . ∧

′
Σ φ

′
n−1) = C ′

Σ(φ′0 ∧
′
Σ . . . ∧

′
Σ φ

′
n−1).

Now I ′ has the N ′-congruence property, whence, by Proposition 3.11 and

Lemma 4.3,

φ′N
′

∧′N ′

Σ φ′N
′

0 ∧′N ′

Σ . . . ∧′N ′

Σ φ′N
′

n−1 = φ′N
′

0 ∧′N ′

Σ . . . ∧′N ′

Σ φ′N
′

n−1.

But, now, by the property of conjunction, as inherited, by Lemma 4.5, by

I ′min, we get that

φ′N
′

∈ C ′min
Σ (φ′N

′

∧′N ′

Σ φ′N
′

0 ∧′N ′

Σ . . . ∧′N ′

Σ φ′N
′

n−1)

= C ′min(φ′N
′

0 ∧′N ′

Σ . . . ∧′N ′

Σ φ′N
′

n−1)

= C ′min
Σ (φ′N

′

0 , . . . , φ′N
′

n−1)

⊆ C ′min
Σ (Φ′N ′

).

This shows that C ′N ′

≤ C ′min and therefore that C ′min = C ′N ′

. Hence I ′ is

an (N,N ′)-full model of I. �

5 The Deduction-Detachment Theorem

Let I = 〈Sign,SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. I is said to have the (finitary uniterm)
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• N -modus ponens with respect to σ : SEN2 → SEN in N if, for all

Σ ∈ |Sign|,Φ ∪ {φ, ψ} ⊆ SEN(Σ),

σΣ(φ, ψ) ∈ CΣ(Φ) implies ψ ∈ CΣ(Φ, φ),

• N -deduction theorem with respect to σ : SEN2 → SEN in N if,

for all Σ ∈ |Sign|,Φ ∪ {φ, ψ} ⊆ SEN(Σ),

ψ ∈ CΣ(Φ, φ) implies σΣ(φ, ψ) ∈ CΣ(Φ),

• N -deduction-detachment theorem with respect to σ : SEN2 →

SEN in N if it has both the N -modus ponens and the N -deduction

theorem with respect to σ : SEN2 → SEN in N .

When the N -modus ponens, the N -deduction theorem or the N -de-

duction-detachment theorem are under consideration, the natural transfor-

mation σ : SEN2 → SEN in N will be denoted by →, following common

practice in abstract algebraic logic and in analogy with the implication con-

nective of classical and intuitionistic propositional logic, and, instead of the

prefix notation →Σ (φ, ψ), the infix φ→Σ ψ will be usually used.

In [23], a form of the deduction-detachment property for π-institutions

was considered but the notion was more general than the one considered

here. It could be termed the infinitary multiterm deduction-detachment

theorem in the sense that it allowed infinitely many sentences as arguments

of the natural transformation and, also, infinitely many output sentences

in place of the single sentence σΣ. Also the notion was not relativized to a

given category N of natural transformations on SEN but was an arbitrary

natural transformation from PSEN2 to PSEN.

The following lemma provides a few basic properties of an N -deduction-

detachment familiar from corresponding properties of the implication con-

nective of classical propositional logic.

Lemma 5.1. Suppose that I = 〈Sign,SEN, C〉 is a π-institution, N a

category of natural transformations on SEN and that I has the N -deduction-

detachment theorem with respect to →: SEN2 → SEN. Then, for all Σ ∈

|Sign|, φ, χ, ψ ∈ SEN(Σ),

1. φ→Σ φ ∈ CΣ(∅),
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2. φ→Σ (ψ →Σ φ) ∈ CΣ(∅),

3. (φ→Σ (χ→Σ ψ)) →Σ ((φ→Σ χ) →Σ (φ→Σ ψ)) ∈ CΣ(∅).

Proof.

1. Since, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), we have, by reflexivity, φ ∈

CΣ(φ), we get that φ→Σ φ ∈ CΣ(∅).

2. Again by reflexivity, we have, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

φ ∈ CΣ(φ, ψ), whence ψ →Σ φ ∈ CΣ(φ), and, therefore, φ→Σ (ψ →Σ

φ) ∈ CΣ(∅).

3. Note that, for all Σ ∈ |Sign|, φ, χ, ψ ∈ SEN(Σ), we have, by the

N -modus ponens with respect to →Σ, ψ ∈ CΣ(φ, φ →Σ χ, φ →Σ

(χ →Σ ψ)). Therefore, by the deduction property with respect to

→Σ, φ→Σ ψ ∈ CΣ(φ→Σ χ, φ→Σ (χ→Σ ψ)), whence (φ→Σ χ) →Σ

(φ→Σ ψ) ∈ CΣ(φ→Σ (χ→Σ ψ)). Thus, finally, we have

(φ→Σ (χ→Σ ψ)) →Σ ((φ →Σ χ) →Σ (φ→Σ ψ)) ∈ CΣ(∅).

�

An alternative, simpler, characterization of the modus ponens property

is provided in the following lemma. It parallels the well-known form of the

modus ponens as an inference rule of classical propositional logic:

φ, φ→ ψ

ψ
.

Lemma 5.2. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. I has the N -modus

ponens with respect to →: SEN2 → SEN in N if and only if, for all

Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), ψ ∈ CΣ(φ, φ→Σ ψ).

Proof. Suppose, first, that, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), ψ ∈

CΣ(φ, φ →Σ ψ) and that φ →Σ ψ ∈ CΣ(Φ). Then we have φ, φ →Σ ψ ∈

CΣ(Φ, φ), whence ψ ∈ CΣ(φ, φ→Σ ψ) ⊆ CΣ(CΣ(Φ, φ)) = CΣ(Φ, φ).

Suppose, conversely, that I has the N -modus ponens and that Σ ∈

|Sign|, φ, ψ ∈ SEN(Σ). Then, setting Φ = {φ →Σ ψ}, we get φ →Σ

ψ ∈ CΣ(Φ), whence, by the N -modus ponens, ψ ∈ CΣ(Φ, φ), i.e., ψ ∈

CΣ(φ, φ →Σ ψ). �
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The property of having the N -modus ponens is preserved by surjective

(N,N ′)-logical morphisms as was shown to be the case with the property

of having an N -conjunction.

Lemma 5.3. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. If I has the N -modus

ponens with respect to →: SEN2 → SEN in N then, every model I ′ of I

via a surjective (N,N ′)-logical morphism 〈F, α〉 : I〉−seI ′ has the N ′-modus

ponens.

Proof. Suppose that I = 〈Sign,SEN, C〉 has the N -modus ponens

with respect to → and that 〈F, α〉 : I〉−seI ′ is a surjective (N,N ′)-logical

morphism from I to I ′ = 〈Sign′,SEN′, C ′〉. Let Σ′ ∈ |Sign′|, φ′, ψ′ ∈

SEN′(Σ′). By surjectivity, there exist Σ ∈ |Sign|, such that F (Σ) = Σ′

and φ, ψ ∈ SEN(Σ), such that αΣ(φ) = φ′, αΣ(ψ) = ψ′. Since I has

the N -modus ponens with respect to →, we get, by Lemma 5.2, ψ ∈

CΣ(φ, φ→Σ ψ). Thus, since 〈F, α〉 is an (N,N ′)-logical morphism, αΣ(ψ) ∈

C ′
F (Σ)(αΣ(φ), αΣ(φ →Σ ψ)). Therefore, since → is in N , there exists, by

the epimorphic property, a →′: SEN′2 → SEN′ in N ′, such that ψ′ ∈

C ′
Σ′(φ′, φ′ →′

Σ′ ψ′). Hence, once more by Lemma 5.2, I ′ has the N ′-modus

ponens with respect to →′ . �

Finally, both the N -modus ponens and the N -deduction theorem are

preserved by (N,N ′)-bilogical morphisms.

Lemma 5.4. Suppose that I=〈Sign,SEN,C〉 and I ′=〈Sign′,SEN′,C ′〉

are π-institutions and N,N ′ categories of natural transformations on SEN,

SEN′, respectively. If 〈F, α〉 : I `se I ′ is an (N,N ′)-bilogical morphism,

then I has the N -deduction-detachment theorem if and only if I ′ has the

N ′-deduction-detachment theorem.

Proof. It was shown in Lemma 5.3 that the N -modus ponens is pre-

served by surjective logical morphisms, i.e., that if 〈F, α〉 : I〉−seI ′ is a

surjective (N,N ′)-logical morphism and I has the N -modus ponens then

I ′ has the N ′-modus ponens. If 〈F, α〉 : I `se I ′ is an (N,N ′)-bilogical mor-

phism then, the same sequence of implications hold in the reverse direction

showing that, if I ′ has the N ′-modus ponens, then I has the N -modus po-

nens. It suffices, therefore, to show that the same holds with the property

of having the N -deduction theorem.
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Suppose, first, that I has the N -deduction theorem with respect to

→: SEN2 → SEN and let Σ′ ∈ |Sign′|,Φ′ ∪ {φ′, ψ′} ⊆ SEN′(Σ′), such

that ψ′ ∈ C ′
Σ′(Φ′, φ′). By the surjectivity of 〈F, α〉, we get that there exist

Σ ∈ |Sign|, such that F (Σ) = Σ′ and Φ ∪ {φ, ψ} ⊆ SEN(Σ), such that

αΣ(Φ) = Φ′, αΣ(φ) = φ′ and αΣ(ψ) = ψ′. Hence, we obtain that αΣ(ψ) ∈

C ′
F (Σ)(αΣ(Φ), αΣ(φ)). But this implies that ψ ∈ CΣ(Φ, φ), whence, since I

has the N -deduction theorem with respect to →, we get φ→Σ ψ ∈ CΣ(Φ).

Thus αΣ(φ →Σ ψ) ∈ C ′
F (Σ)(αΣ(Φ)). Therefore, by the (N,N ′)-epimorphic

property, there exists →′: SEN′2 → SEN′, such that αΣ(φ) →′
F (Σ) αΣ(ψ) ∈

C ′
F (Σ)(αΣ(Φ)), but this is equivalent to φ′ →′

Σ′ ψ′ ∈ C ′
Σ′(Φ′), which proves

that I ′ has the N ′-deduction theorem.

The converse is similar and will be omitted. �

Since 〈ISign, π
N 〉 : I → IN is an (N,N )-bilogical morphism, Lemma

5.4 has the following

Corollary 5.5. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. I has the N -deduction

detachment theorem if and only if IN has the N-deduction-detachment the-

orem.

If a π-institution has the N -deduction-detachment theorem with respect

to →, then the Frege equivalence system Λ(I) of I is a {→}-congruence

system of I. The analogous property for an N -conjunction was given in

Lemma 4.3.

Lemma 5.6. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. If I has the N -deduction-

detachment theorem with respect to →: SEN2 → SEN in N then Λ(I) is a

{→}-congruence system on SEN and ΛC(F ) is a {→}-congruence system

on SEN, for all axiom systems F on SEN.

Proof. We only prove the first statement. The second may be proved

similarly. Let Σ ∈ |Sign|, φ0, φ1, ψ0, ψ1 ∈ SEN(Σ), such that

〈φ0, φ1〉, 〈ψ0, ψ1〉 ∈ ΛΣ(I).

Then CΣ(φ0) = CΣ(φ1) and CΣ(ψ0) = CΣ(ψ1). These imply that

CΣ(ψ1) = CΣ(ψ0) ⊆ CΣ(φ0, φ0 →Σ ψ0) = CΣ(φ1, φ0 →Σ ψ0).



FULL MODELS, FREGE SYSTEMS AND METALOGICAL PROPERTIES 51

Hence ψ1 ∈ CΣ(φ1, φ0 →Σ ψ0), and, therefore, φ1 →Σ ψ1 ∈ CΣ(φ0 →Σ ψ0).

By symmetry, we also have that φ0 →Σ ψ0 ∈ CΣ(φ1 →Σ ψ1), whence, we

get 〈φ0 →Σ ψ0, φ1 →Σ ψ1〉 ∈ ΛΣ(I). �

Theorem 5.7. Suppose that I = 〈Sign,SEN, C〉 is a finitary π-insti-

tution and N a category of natural transformations on SEN. If I has the

N -deduction-detachment theorem with respect to →: SEN2 → SEN, then,

every (N,N ′)-full model I ′ of I via a surjective (N,N ′)-logical morphism

〈F, α〉 : I〉−seI ′ has the N ′-deduction-detachment theorem.

Proof. First, by Lemma 5.3, the N ′-modus ponens has been taken care

of. So, it suffices to prove the N ′-deduction theorem. Note that, in view of

Lemma 5.4, the price of replacing an interpretation by a semi-interpretation

is imposing the stronger requirements of I being finitary and of I ′ being a

full (N,N ′)-model of I.

Suppose that I has the N -deduction-detachment theorem with respect

to →: SEN2 → SEN. It suffices to show that if 〈F, α〉 : I〉−seI ′ is a surjective

(N,N ′)-logical morphism and I ′ is an 〈F, α〉-min (N,N ′)-model of I, then

I ′ has the N ′-deduction theorem with respect to the →′: SEN′2 → SEN′ of

Lemma 5.3. We will take advantage in this proof of Lemma 2.1 of Section

2. Let Σ′ ∈ |Sign′|,Φ′ ∪ {φ′, ψ′} ⊆ SEN′(Σ′), such that ψ′ ∈ C ′
Σ′(Φ′, φ′).

Then, by surjectivity, there exists Σ ∈ |Sign|,Φ ∪ {φ, ψ} ⊆ SEN(Σ), such

that Σ′ = F (Σ) and Φ′ = αΣ(Φ), φ′ = αΣ(φ), ψ′ = αΣ(ψ). Hence, we get

αΣ(ψ) ∈ C ′
F (Σ)(αΣ(Φ), αΣ(φ)). Our goal is to show that

αΣ(φ) →′
F (Σ) αΣ(ψ) ∈ C ′

F (Σ)(αΣ(Φ)).

To this aim, we use Lemma 2.1, which shows that C ′
F (Σ)(αΣ(Φ), αΣ(φ)) =⋃∞

n=0Xn, where X0 = αΣ(Φ) ∪ αΣ(φ) and, for all n ≥ 0,

Xn+1 = {αΣ(χ) : (∃ Y ⊆ω SEN(Σ))(χ ∈ CΣ(Y ) and αΣ(Y ) ⊆ Xn)}.

This characterization allows us to use induction on n to show that, if

αΣ(ψ) ∈ Xn, then αΣ(φ) →′
F (Σ) αΣ(ψ) ∈ C ′

F (Σ)(αΣ(Φ)).

If n = 0, αΣ(ψ) ∈ αΣ(Φ) or αΣ(ψ) = αΣ(φ).

• If αΣ(ψ) ∈ αΣ(Φ), then we get αΣ(ψ) →′
F (Σ) (αΣ(φ) →′

F (Σ) αΣ(ψ)) ∈

C ′
F (Σ)(αΣ(Φ)) since, by Lemma 5.1, ψ →Σ (φ→Σ ψ) ∈ CΣ(Φ). Hence,

by N ′-modus ponens, αΣ(φ) →′
F (Σ) αΣ(ψ) ∈ C ′

F (Σ)(αΣ(Φ)).
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• If, on the other hand, αΣ(ψ) = αΣ(φ), then αΣ(φ) →′
F (Σ) αΣ(ψ) ∈

C ′
F (Σ)(αΣ(Φ)), since, again by Lemma 5.1, φ→Σ φ ∈ CΣ(Φ).

Assume, as the induction hypothesis, that, for all n ≤ k, if αΣ(ψ) ∈ Xn,

then αΣ(φ) →′
F (Σ) αΣ(ψ) ∈ C ′

F (Σ)(αΣ(Φ)).

Suppose that αΣ(ψ) ∈ Xk+1. Then, there exist x ∈ SEN(Σ) and a finite

Y={y0, y1, . . . , ym−1} ⊆ SEN(Σ), such that x ∈ CΣ(y0, . . . , ym−1), αΣ(x) =

αΣ(ψ) and αΣ(yi) ∈ Xk, i = 0, . . . ,m− 1.

• If Y = ∅, we get αΣ(ψ) ∈ C ′
F (Σ)(∅), whence, since αΣ(ψ) →′

F (Σ)

(αΣ(φ) →′
F (Σ) αΣ(ψ)) ∈ C ′

F (Σ)(αΣ(Φ)), we obtain that αΣ(φ) →′
F (Σ)

αΣ(ψ) ∈ C ′
F (Σ)(αΣ(Φ)), by N ′-modus ponens.

• If Y 6= ∅, then, by the induction hypothesis, αΣ(φ) →′
F (Σ) αΣ(yi) ∈

C ′
F (Σ)(αΣ(Φ)), for all i = 0, . . . ,m − 1. But x ∈ CΣ(y0, . . . , ym−1)

implies, by the N -deduction-detachment theorem, that φ →Σ x ∈

CΣ(φ→Σ y0, . . . , φ→Σ ym−1), whence

αΣ(φ) →′
F (Σ) αΣ(ψ)

∈ C ′
F (Σ)(αΣ(φ) →′

F (Σ) αΣ(y0), . . . , αΣ(φ) →′
F (Σ) αΣ(ym−1))

⊆ C ′
F (Σ)(αΣ(Φ)).

�

Finally, it is shown that, for a given π-institution I with the deduction-

detachment property, every finitary model of I, possessing the deduction

theorem and the congruence property, is a full model of I.

Proposition 5.8. Suppose that I = 〈Sign,SEN, C〉 is a π-institution,

N a category of natural transformations on SEN, and that I has the N -

deduction-detachment theorem with respect to →: SEN2 → SEN in N .

Then every finitary (N,N ′)-model I ′ via a surjective (N,N ′)-logical mor-

phism 〈F, α〉 : I〉−seI ′ with the N ′-deduction theorem with respect to →′

and the N ′-congruence property is a full (N,N ′)-model of I.

Proof. Suppose 〈F, α〉 : I〉−seI ′ is a surjective (N,N ′)-logical mor-

phism and I ′ has the N ′-deduction theorem and the N ′-congruence prop-

erty. It suffices to show that the 〈F, πN ′

F
α〉-min (N,N ′)-model of I on

SEN′N ′

I ′min = 〈Sign′,SEN′N ′

, C ′min〉 is such that C ′min = C ′N ′

.
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Since I ′N ′

is an (N,N ′)-model of I on SEN′N ′

via 〈F, πN ′

F
α〉, we have

that C ′min ≤ C ′N ′

.

Conversely, let Σ ∈ |Sign′|,Φ′ ∪ {φ′} ∈ SEN′(Σ), such that φ′N
′

∈

C ′N ′

Σ (Φ′N ′

). Thus, by definition, φ′ ∈ C ′
Σ(Φ′). But I ′ is finitary, whence,

there exist ~φ′ = 〈φ′0, . . . , φ
′
n−1〉 ∈ SEN′(Σ)n, such that φ′ ∈ C ′

Σ(~φ′). Since

I ′ has theN ′-deduction theorem with respect to →′: SEN′2 → SEN′, φ′0 →′
Σ

(φ′1 →′
Σ (. . . (φ′n−1 →′

Σ φ′) . . .)) ∈ C ′
Σ(∅) = C ′

Σ(φ′ →′
Σ φ′). Thus

C ′
Σ(φ′0 →′

Σ (φ′1 →′
Σ (. . . (φ′n−1 →′

Σ φ′) . . .))) = C ′
Σ(φ′ →′

Σ φ′).

Now I ′ has the N ′-congruence property, whence, by Proposition 3.11 and

Lemma 5.6,

φ′N
′

0 →′N ′

Σ (φ′N
′

1 →′N ′

Σ (. . . (φ′N
′

n−1 →′N ′

Σ φ′N
′

) . . .)) = φ′N
′

→′N ′

Σ φ′N
′

.

But, now, by the N ′-modus ponens with respect to →′N ′

, as inherited by

I ′min, according to Lemma 5.3, we get that

φ′N
′

∈ C ′min
Σ (φ′N

′

0 , . . . , φ′N
′

n−1, φ
′N ′

1 →′N ′

Σ (. . . (φ′N
′

n−1 →′N ′

Σ φ′N
′

) . . .))

= C ′min
Σ (φ′N

′

0 , . . . , φ′N
′

n−1, φ
′N ′

→′N ′

Σ φ′N
′

)

= C ′min
Σ (φ′N

′

0 , . . . , φ′N
′

n−1)

⊆ C ′min
Σ (Φ′N ′

).

This shows that C ′N ′

≤ C ′min and therefore that C ′min = C ′N ′

. Hence I ′ is

an (N,N ′)-full model of I. �

6 The Property of Disjunction

A π-institution I = 〈Sign,SEN, C〉, with N a category of natural transfor-

mations on SEN, has a (finitary uniterm) N -disjunction ∨ : SEN2 →

SEN in N if, for all Σ ∈ |Sign|,Φ ∪ {φ, ψ} ⊆ SEN(Σ),

CΣ(Φ, φ ∨Σ ψ) = CΣ(Φ, φ) ∩ CΣ(Φ, ψ).

An alternate characterization of the property of N -disjunction is pro-

vided by the following lemma.

Lemma 6.1. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. I has an N -disjunction

∨ if and only if, for all Σ ∈ |Sign|,Φ ∪ {φ, ψ, φ1, φ2} ⊆ SEN(Σ),
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1. φ ∨Σ ψ ∈ CΣ(φ),

2. φ ∨Σ ψ ∈ CΣ(ψ) and

3. ψ ∈ CΣ(Φ, φ1) and ψ ∈ CΣ(Φ, φ2) imply ψ ∈ CΣ(Φ, φ1 ∨Σ φ2).

Proof. Suppose that I has an N -disjunction ∨ : SEN2 → SEN. Then,

for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), by taking Φ = ∅ in the defining condition

of the N -disjunction, we get CΣ(φ ∨Σ ψ) = CΣ(φ) ∩ CΣ(ψ). Therefore

φ∨Σψ ∈ CΣ(φ) and φ∨Σψ ∈ CΣ(ψ). Finally, for arbitrary Φ∪{φ1, φ2, ψ} ⊆

SEN(Σ), since CΣ(Φ, φ1 ∨Σ φ2) = CΣ(Φ, φ1) ∩ CΣ(Φ, φ2), we get that, if

ψ ∈ CΣ(Φ, φ1) and ψ ∈ CΣ(Φ, φ2), then ψ ∈ CΣ(Φ, φ1 ∨Σ φ2).

Suppose, conversely, that the three conditions of the statement are sat-

isfied. Let Σ ∈ |Sign|,Φ ∪ {φ, ψ} ⊆ SEN(Σ). Since φ ∨Σ ψ ∈ CΣ(φ) and

φ ∨Σ ψ ∈ CΣ(ψ), we get that CΣ(Φ, φ ∨Σ ψ) ⊆ CΣ(Φ, φ) ∩ CΣ(Φ, ψ). The

reverse inclusion is the third condition in the statement. �

The N -disjunction, when it exists, is “commutative” and “idempotent”.

Lemma 6.2. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. If I has an N -disjunction

∨, then, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

CΣ(φ ∨Σ ψ) = CΣ(ψ ∨Σ φ) and CΣ(φ) = CΣ(φ ∨Σ φ).

Proof. Applying the defining condition for an N -disjunction, taking

Φ = ∅, we get CΣ(φ∨Σψ) = CΣ(φ)∩CΣ(ψ) = CΣ(ψ)∩CΣ(φ) = CΣ(ψ∨Σφ)

and CΣ(φ ∨Σ φ) = CΣ(φ) ∩CΣ(φ) = CΣ(φ). �

As was the case with the property of having an N -conjunction and of

having the N -deduction-detachment theorem, the property of having an

N -disjunction is preserved under bilogical morphisms.

Lemma 6.3. Suppose that I = 〈Sign,SEN, C〉, I ′ = 〈Sign′,SEN′, C ′〉

are π-institutions, N,N ′ categories of natural transformations on SEN,

SEN′, respectively, and 〈F, α〉 : I `se I ′ an (N,N ′)-bilogical morphism. I

has an N -disjunction if and only if I ′ has an N ′-disjunction.

Proof. Both directions are very similar to the corresponding directions

of Lemmas 4.1 and 5.4 and will be omitted. �

Applying Lemma 6.3 to the (N,N )-bilogical morphism 〈ISign, π
N 〉 :

I `se IN , we immediately obtain
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Corollary 6.4. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. I has an N -disjunction

if and only if IN has an N -disjunction.

The property of N -disjunction may be applied to a collection of dis-

junctions involving a single sentence ψ and a finite collection of sentences

φ1, . . . , φn. This extension of the defining property of disjunction is accom-

plished by applying induction on the number n of sentences.

Lemma 6.5. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. If I has an N -disjunction

∨, then, for all Σ ∈ |Sign|,Φ ∪ {φ1, . . . , φn, ψ} ⊆ SEN(Σ),

CΣ(Φ, φ1 ∨Σ ψ, . . . , φn ∨Σ ψ) = CΣ(Φ, φ1, . . . , φn) ∩ CΣ(Φ, ψ).

Proof. The proof is by induction on n ≥ 1. For n = 1, the equality re-

duces to the defining equality of anN -disjunction ∨. Assume that the state-

ment is true for n = k, i.e., that, for all Σ ∈ |Sign|,Φ ∪ {φ1, . . . , φk, ψ} ⊆

SEN(Σ),

CΣ(Φ, φ1 ∨Σ ψ, . . . , φk ∨Σ ψ) = CΣ(Φ, φ1, . . . , φk) ∩ CΣ(Φ, ψ).

Then, for n = k + 1, we get

CΣ(Φ, φ1 ∨Σ ψ, . . . , φk+1 ∨Σ ψ) =

= CΣ(Φ, φ1 ∨Σ ψ, . . . , φk ∨Σ ψ, φk+1) ∩ CΣ(Φ, φ1 ∨Σ ψ, . . . , φk ∨Σ ψ,ψ)

= CΣ(Φ, φ1, . . . , φk+1) ∩CΣ(Φ, φk+1, ψ)∩

CΣ(Φ, φ1, . . . , φk, ψ) ∩ CΣ(Φ, ψ)

= CΣ(Φ, φ1, . . . , φk+1) ∩CΣ(Φ, ψ).

�

Furthermore, if a given sentence ψ is a consequence of finitely many

sentences φ1, . . . , φn, then the disjunction of ψ with any other sentence is

also a consequence of the disjunctions of φ1, . . . , φn with that same sentence.

Lemma 6.6. Suppose that I = 〈Sign,SEN, C〉 is a π-institution and

N a category of natural transformations on SEN. If I has an N -disjunction

∨, then, for all Σ ∈ |Sign|, φ1, . . . , φn, ψ, χ ∈ SEN(Σ),

ψ ∈ CΣ(φ1, . . . , φn) implies ψ ∨Σ χ ∈ CΣ(φ1 ∨Σ χ, . . . , φn ∨Σ χ).
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Proof. Suppose that ψ ∈ CΣ(φ1, . . . , φn). Recall that, by Lemma 6.1,

ψ ∨Σ χ ∈ CΣ(ψ) and ψ ∨Σ χ ∈ CΣ(χ). Therefore, we get

ψ ∨Σ χ ∈ CΣ(ψ) ∩ CΣ(χ)

⊆ CΣ(φ1, . . . , φn) ∩ CΣ(χ)

= CΣ(φ1 ∨Σ χ, . . . , φn ∨Σ χ),

the last equality holding by Lemma 6.5. �

Finally, it is shown that the property of disjunction for finitary π-insti-

tutions is inherited by full models via surjective logical morphisms.

Theorem 6.7. Suppose that I = 〈Sign,SEN, C〉 is a finitary π-insti-

tution and N a category of natural transformations on SEN. If I has an

N -disjunction ∨, then, every (N,N ′)-full model I ′ of I via a surjective

(N,N ′)-logical morphism 〈F, α〉 : I〉−seI ′ has an N ′-disjunction.

Proof. Suppose that I has the N -disjunction ∨ : SEN2 → SEN. It

suffices, by Lemma 6.3, to show that if 〈F, α〉 : I〉−seI ′ is a surjective

(N,N ′)-logical morphism onto the 〈F, α〉-min (N,N ′)-model I ′ of I, then

I ′ has an N ′-disjunction. We will take advantage in the proof, once more,

of Lemma 2.1 of Section 2. Let Σ′ ∈ |Sign′|,Φ′ ∪ {φ′, ψ′} ⊆ SEN′(Σ′).

By surjectivity, there exist Σ ∈ |Sign|,Φ ∪ {φ, ψ} ⊆ SEN(Σ), such that

Σ′ = F (Σ) and Φ′ = αΣ(Φ), φ′ = αΣ(φ), ψ′ = αΣ(ψ). Our goal is to show

that

C ′
F (Σ)(αΣ(Φ), αΣ(φ) ∨′

F (Σ) αΣ(ψ)) =

C ′
F (Σ)(αΣ(Φ), αΣ(φ)) ∩ C ′

F (Σ)(αΣ(Φ), αΣ(ψ)).

By the N -disjunction property for I, we get that CΣ(Φ, φ∨Σψ) = CΣ(Φ, φ)

∩CΣ(Φ, ψ). Thus CΣ(Φ, φ∨Σψ) ⊆ CΣ(Φ, φ) and CΣ(Φ, φ∨Σψ) ⊆ CΣ(Φ, ψ),

whence C ′
F (Σ)(αΣ(Φ), αΣ(φ) ∨′

F (Σ) αΣ(ψ)) ⊆ C ′
F (Σ)(αΣ(Φ), αΣ(φ)) and

C ′
F (Σ)(αΣ(Φ), αΣ(φ)∨′

F (Σ)αΣ(ψ)) ⊆ C ′
F (Σ)(αΣ(Φ), αΣ(ψ)), which yield that

C ′
F (Σ)(αΣ(Φ), αΣ(φ) ∨′

F (Σ) αΣ(ψ)) ⊆

C ′
F (Σ)(αΣ(Φ), αΣ(φ)) ∩ C ′

F (Σ)(αΣ(Φ), αΣ(ψ)).

For the converse, it may be shown, first, using a similar induction as in

the proof of Theorem 5.7, that, for all Σ ∈ |Sign|,Φ∪{φ, χ, ψ} ⊆ SEN(Σ),

αΣ(ψ) ∈ C ′
F (Σ)(αΣ(Φ), αΣ(φ)) implies
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αΣ(ψ) ∨′
F (Σ) αΣ(χ) ∈ C ′

F (Σ)(αΣ(Φ), αΣ(φ) ∨′
F (Σ) αΣ(χ)).

Having this at hand, we now obtain, for all χ ∈ SEN(Σ),

αΣ(χ) ∈ C ′
F (Σ)(αΣ(Φ), αΣ(φ)) ∩C ′

F (Σ)(αΣ(Φ), αΣ(ψ))

implies αΣ(χ) ∈ C ′
F (Σ)(αΣ(Φ), αΣ(φ)) and αΣ(χ) ∈ C ′

F (Σ)(αΣ(Φ), αΣ(ψ)),

whence αΣ(χ) ∨′
F (Σ) αΣ(ψ) ∈ C ′

F (Σ)(αΣ(Φ), αΣ(φ) ∨′
F (Σ) αΣ(ψ)) and

αΣ(χ) ∨′
F (Σ) αΣ(χ) ∈ C ′

F (Σ)(αΣ(Φ), αΣ(ψ) ∨′
F (Σ) αΣ(χ)). Therefore, we,

finally, obtain

αΣ(χ) ∈ C ′
F (Σ)(αΣ(χ) ∨′

F (Σ) αΣ(χ))

⊆ C ′
F (Σ)(αΣ(Φ), αΣ(ψ) ∨′

F (Σ) αΣ(χ))

= C ′
F (Σ)(αΣ(Φ), αΣ(χ) ∨′

F (Σ) αΣ(ψ))

⊆ C ′
F (Σ)(αΣ(Φ), αΣ(φ) ∨′

F (Σ) αΣ(ψ)).

�

7 Reductio ad Absurdum

Let I = 〈Sign,SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. I has the

• N -Intuitionistic Reductio ad Absurdum with respect to a ¬ :

SEN → SEN in N if, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

¬Σφ ∈ CΣ(Φ) iff CΣ(Φ, φ) = SEN(Σ),

• N -Reductio ad Absurdum with respect to ¬ : SEN → SEN in N

if, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) iff CΣ(Φ,¬Σφ) = SEN(Σ).

The following lemma provides a fundamental connection between the

two properties of the N -intuitionistic reductio ad absurdum and of the

N -reductio ad absurdum.

Lemma 7.1. Let I = 〈Sign,SEN, C〉 be a π-institution and N a cate-

gory of natural transformations on SEN. I has the N -reductio ad absurdum

with respect to ¬ : SEN → SEN if and only if it has the N -intuitionistic re-

ductio ad absurdum with respect to ¬ and, for all Σ ∈ |Sign|, φ ∈ SEN(Σ),

φ ∈ CΣ(¬Σ¬Σφ).
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Proof. Suppose, first, that I has the N -reductio ad absurdum with re-

spect to ¬. Then, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), ¬Σφ ∈ CΣ(¬Σφ), whence

CΣ(¬Σφ,¬Σ¬Σφ) = SEN(Σ) and, therefore, φ ∈ CΣ(¬Σ¬Σφ). Next, let

Σ ∈ |Sign|,Φ∪ {φ} ⊆ SEN(Σ). To prove that ¬Σφ ∈ CΣ(Φ) iff CΣ(Φ, φ) =

SEN(Σ), it suffices to show that CΣ(Φ,¬Σ¬Σφ) = CΣ(Φ, φ). By what was

just proven, it suffices, in turn, to show that CΣ(Φ,¬Σ¬Σφ) ⊆ CΣ(Φ, φ). In

fact, we have

φ ∈ CΣ(φ) iff CΣ(φ,¬Σφ) = SEN(Σ)

implies CΣ(φ,¬Σ¬Σ¬Σφ) = SEN(Σ)

iff ¬Σ¬Σφ ∈ CΣ(φ).

Suppose, conversely, that I has the N -intuitionistic reductio ad absurdum

with respect to ¬ and, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), φ ∈ CΣ(¬Σ¬Σφ).

To show that φ ∈ CΣ(Φ) iff CΣ(Φ,¬Σφ) = SEN(Σ) it suffices to show that

¬Σ¬Σφ ∈ CΣ(Φ) iff φ ∈ CΣ(Φ). The implication from left to right is an

immediate consequence of φ ∈ CΣ(¬Σ¬Σφ). For the converse, we have

¬Σφ ∈ CΣ(¬Σφ) iff CΣ(φ,¬Σφ) = SEN(Σ)

iff ¬Σ¬Σφ ∈ CΣ(φ).

�

Let I = 〈Sign,SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. A natural transformation ⊥ : SEN → SEN inN is

said to be an N -inconsistent element if, for all Σ ∈ |Sign|, φ ∈ SEN(Σ),

CΣ(⊥Σφ) = SEN(Σ).

Under the presence of the deduction-detachment theorem, the intuitio-

nistic reductio ad absurdum turns out to be equivalent to the presence of

an inconsistent element.

Lemma 7.2. Let I = 〈Sign,SEN, C〉 be a π-institution, N a category

of natural transformations on SEN and suppose that I has the N -deduction-

detachment theorem with respect to →: SEN2 → SEN. Then I has he N -

intuitionistic reductio ad absurdum with respect to ¬ : SEN → SEN if and

only if it has an N -inconsistent element ⊥ : SEN → SEN. Moreover, in

this case, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), CΣ(¬Σφ) = CΣ(φ→Σ ⊥Σφ).
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Proof. Suppose, first, that I has the N -intuitionistic reductio ad ab-

surdum with respect to ¬. Then, for all Σ ∈ |Sign|, φ ∈ SEN(Σ),

φ ∈ CΣ(φ) iff φ→Σ φ ∈ CΣ(∅)

implies ¬Σ¬Σ(φ→Σ φ) ∈ CΣ(∅)

iff CΣ(¬Σ(φ→Σ φ)) = SEN(Σ).

Now let ⊥Σφ = ¬Σ(φ→Σ φ), for all Σ ∈ |Sign|, φ ∈ SEN(Σ).

Suppose, conversely, that ⊥ : SEN → SEN is anN -inconsistent element.

Define, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), ¬Σφ = φ→Σ ⊥Σφ. We then have

¬Σφ ∈ CΣ(Φ) iff φ→Σ ⊥Σφ ∈ CΣ(Φ)

iff ⊥Σφ ∈ CΣ(Φ, φ)

iff CΣ(Φ, φ) = SEN(Σ).

Therefore I has the N -intuitionistic reductio ad absurdum with respect to

¬.

Finally, suppose that I has the N -deduction-detachment theorem with

respect to →, the N -intuitionistic reductio ad absurdum with respect to ¬

and the N -inconsistent element ⊥. Then we have, for all Σ ∈ |Sign|, φ ∈

SEN(Σ), ⊥Σφ ∈ CΣ(φ, φ →Σ ⊥Σφ), whence CΣ(φ, φ →Σ ⊥Σφ) = SEN(Σ)

and hence ¬Σφ ∈ CΣ(φ→Σ ⊥Σφ). Therefore, CΣ(¬Σφ) ⊆ CΣ(φ→Σ ⊥Σφ).

On the other hand, ¬Σφ ∈ CΣ(¬Σφ), whence ⊥Σφ ∈ SEN(Σ) = CΣ(φ,¬Σφ)

and, therefore, φ→Σ ⊥Σφ ∈ CΣ(¬Σφ). Thus CΣ(φ→Σ ⊥Σφ) ⊆ CΣ(¬Σφ).

�

The existence of an inconsistent element is a property inherited by all

models via surjective logical morphisms.

Lemma 7.3. If a π-institution I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, has an N -inconsistent element ⊥ :

SEN → SEN, then every (N,N ′)-model I ′ of I via a surjective (N,N ′)-

logical morphism 〈F, α〉 : I〉−seI ′ has an N ′-inconsistent element.

Proof. Suppose that ⊥ : SEN → SEN is an N -inconsistent element

of I and that I ′ is an (N,N ′)-model of I via a surjective (N,N ′)-logical

morphism 〈F, α〉 : I〉−seI ′. Then, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), we

have CΣ(⊥Σφ) = SEN(Σ), whence αΣ(CΣ(⊥Σφ)) = αΣ(SEN(Σ)) and,

thus, using surjectivity and the fact that 〈F, α〉 is a logical morphism,

C ′
F (Σ)(αΣ(⊥Σφ)) = SEN′(F (Σ)). Since 〈F, α〉 is (N,N ′)-epimorphic, there
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exists ⊥′ : SEN′ → SEN′, such that C ′
F (Σ)(⊥

′
F (Σ)αΣ(φ)) = SEN′(F (Σ)).

Therefore, since 〈F, α〉 is surjective, for all Σ′ ∈ |Sign′|, φ′ ∈ SEN′(Σ′), we

get C ′
Σ′(⊥′

Σ′φ′) = SEN′(Σ′). This implies that ⊥′ : SEN′ → SEN′ is an

N ′-inconsistent element of I ′. �

Corollary 7.4. If a π-institution I = 〈Sign,SEN, C〉, with N a cate-

gory of natural transformations on SEN, satisfies the N -deduction-detach-

ment theorem with respect to →: SEN2 → SEN in N and the N -intui-

tionistic reductio ad absurdum with respect to ¬ : SEN → SEN, then ev-

ery (N,N ′)-full model I ′ of I via a surjective (N,N ′)-logical morphism

〈F, α〉 : I〉−seI ′ satisfies the N ′-deduction-detachment theorem and the N ′-

intuitionistic reductio ad absurdum.

Proof. This is a direct consequence of Theorem 5.7 and Lemmas 7.2

and 7.3. �
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