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Abstract

Feature selection is applied to reduce the number of feataormany applications where data has
hundreds or thousands of features. Existing feature sefettethods mainly focus on finding rele-
vant features. In this paper, we show that feature relevalore is insufficient for efficient feature
selection of high-dimensional data. We define feature rddnoy and propose to perform explicit
redundancy analysis in feature selection. A new framewsiktroduced that decouples relevance
analysis and redundancy analysis. We develop a correlbised method for relevance and redun-
dancy analysis, and conduct an empirical study of its effiyeand effectiveness comparing with
representative methods.
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1. Introduction

In classic supervised learning, one is given a training set of labeled-fiexgyth feature vectors
(instances). An instance is typically described as an assignment of Vialudds, ..., fy) to a set
of features= = (F4, ..., Fy) and one of possible classeas, ..., ¢ to the class label. The task is to
induce a hypothesis (classifier) that accurately predicts the labels effinstances. The learning of
the classifier is inherently determined by the feature-values. In theorg f@atures should provide
more discriminating power, but in practice, with a limited amount of training datesstve features
will not only significantly slow down the learning process, but also causeldssifier to over-fit
the training data as irrelevant or redundant features may confuse thimtgalgorithm.

Feature selection has been an active and fruitful field of researctiemetbpment for decades
in statistical pattern recognition (Mitra et al., 2002), machine learning (Lil.e2@02b; Robnik-
Sikonja and Kononenko, 2003), data mining (Kim et al., 2000; Dash et8l2)2nd statistics (Hastie
et al., 2001; Miller, 2002). It has proven in both theory and practicecéffe in enhancing learning
efficiency, increasing predictive accuracy, and reducing complexityasned results (Almuallim
and Dietterich, 1994; Koller and Sahami, 1996; Blum and Langley, 19%%)G be some subset of
F and fg be the value vector db. In general, the goal of feature selection can be formalized as se-
lecting a minimum subs& such thaP(C | G = fg) is equal or as close as possibld{& | F = f),
whereP(C | G = fg) is the probability distribution of different classes given the feature values
G andP(C | F = f) is the original distribution given the feature valuesHr(Koller and Sahami,
1996). We call such a minimum subset@gtimal subset, illustrated by the example below.
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Example 1 (Optimal subset)Let features I ..., Fs be Boolean. The target conceptisQy(F1, F)
where g is a Boolean function. With E F; and R, = Fs, there are only eight possible instances.
In order to determine the target concepy, iB indispensable; one of;F/and k5 can be disposed of
(note that C can also be determined bifrg F3)), but we must have one of them; bothaad K
can be discarded. Eithef;, R} or {F1, Rz} is an optimal subset. The goal of feature selection is
to find either of them.

In the presence of hundreds or thousands of features, resesancitiee (Yang and Pederson, 1997;
Xing et al., 2001) that it is common that a large number of features are momative because they
are either irrelevant or redundant with respect to the class concepthénwords, learning can be
achieved more efficiently and effectively with just relevant and nomundent features. However,
the number of possible feature subsets grows exponentially with the iscofamensionality.
Finding an optimal subset is usually intractable (Kohavi and John, 19@iAnany problems related
to feature selection have been shown to be NP-hard (Blum and Rive&).19

Researchers have studied various aspects of feature selection. f @mekaey aspects is to
measure thgoodnes®of a feature subset in determining an optimal one (Liu and Motoda, 1998).
Different feature selection methods can be broadly categorized intardygper model (Kohavi
and John, 1997; Kim et al., 2000) and thieer model (Liu and Setiono, 1996; Liu et al., 2002b;
Hall, 2000; Yu and Liu, 2003). The wrapper model uses the predictigaracy of a predetermined
learning algorithm to determine the goodness of the selected subsets. Thhedsrae compu-
tationally expensive for data with a large number of features (Kohavi ahd,1997). The filter
model separates feature selection from classifier learning and selatirefeubsets that are inde-
pendent of any learning algorithm. It relies on various measures of trer@echaracteristics of the
training data such as distance, information, dependency, and congigi@nand Motoda, 1998).
Searchis another key problem in feature selection. To balance the tradeofait egptimality and
computational efficiency, different search strategies such as comipéetestic, and random search
have been studied to generate candidate feature subsets for eval@ationahd Langley, 1997;
Dash and Liu, 2003). According to the availability of class labels, theréatare selection meth-
ods forsupervised learningDash and Liu, 1997; Yu and Liu, 2003) as well as fmsupervised
learning (Kim et al., 2000; Dash et al., 2002). Feature selection has foundssiztemany applica-
tions like text categorization (Yang and Pederson, 1997; Forman, 2@@&)e retrieval (Swets and
Weng, 1995; Dy et al., 2003), genomic microarray analysis (Xing et @] 2%u and Liu, 2004),
customer relationship management (Ng and Liu, 2000), and intrusion det@otie et al., 2000).

Despite the impressive achievements in the current field of feature selesgarbserve great
challenges arising from domains such as genomic microarray analysiscandtegorization where
data may contain tens of thousands of features (Yu and Liu, 2004; Fpa0@8). First of all, the
nature of high dimensionality of data can cause the so-called problem fe‘ai dimensional-
ity” (Hastie et al., 2001). Secondly, high-dimensional data often containy nealundant features.
Both theoretical analysis and empirical evidence show that along with iariéxatures, redundant
features also affect the speed and accuracy of learning algorithmthamdhould be eliminated
as well (Koller and Sahami, 1996; Kohavi and John, 1997; Hall, 20BRjsting feature selection
methods mainly exploit two approaches: individual (feature) evaluatidisalset evaluation (Blum
and Langley, 1997; Guyon and Elisseeff, 2003). Methods of indalidualuation rank features ac-
cording to their importance in differentiating instances of different claaseiscan only remove
irrelevant features as redundant features likely have similar rankiMigshods of subset evalua-
tion search for a minimum subset of features that satisfies some goodreessrenand can remove
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irrelevant features as well as redundant ones. However, amonmex}iguristic search strategies
for subset evaluation, even greedy sequential search which ethecsearch space fro@(2V) to
O(N?) can become very inefficient for high-dimensional data. The limitations ofiegisesearch
clearly suggest that we should pursue a different framework ofrieatlection that allows efficient
analysis of both feature relevance and redundancy for high-dimexisiata.

The remainder of this paper is organized as follows. In Section 2, wenaéons of feature
relevance, identify the need for redundancy analysis, and providenaaf definition of feature
redundancy. In Section 3, we analyze in detail the limitations of currenbappes and propose
a new framework of efficient feature selection. In Section 4, we desadorelation measures,
and present a correlation-based method for efficient relevancesdnddancy analysis under the
new framework. Section 5 contains an empirical study of our method in terrafficiency and
effectiveness comparing with representative methods. Section 6 ceschid work and points out
some future directions.

2. Feature Relevance and Feature Redundancy

Traditionally, feature selection research has focused on searchimgldvant features. Although
some recent work has pointed out the existence and effect of fesmwadancy (Koller and Sa-
hami, 1996; Kohavi and John, 1997; Hall, 2000), there is little work origkpreatment of feature
redundancy. In the following, we first present a classic notion of featelevance and illustrate
why it alone cannot handle feature redundancy, and then provideowual definition of feature
redundancy which paves the way for efficient elimination of redundzattifes.

2.1 Feature Relevance

Based on a review of previous definitions of feature relevance, airavi, and Pfleger classified
features into three disjoint categories, namely, strongly relevant, wealdyant, and irrelevant
features (John et al., 1994). LEEtbe a full set of featured;; a feature, an&g = F — {F}. These
categories of relevance can be formalized as follows.

Definition 1 (Strong relevance)A feature kis strongly relevant iff

PCIF,S)#P(CIS).
Definition 2 (Weak relevance)A feature Fis weakly relevant iff
P(C|K,S)=P(C|S), and
3§ C S, suchthatP(C|F, §) #P(C|S).

Corollary 1 (Irrelevance) A feature Fis irrelevant iff

VSCS, PCIR, §)=PC|S).
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Strong relevance of a feature indicates that the feature is alwayssaegés an optimal subset;
it cannot be removed without affecting the original conditional class digtah. Weak relevance
suggests that the feature is not always necessary but may beconssargder an optimal subset
at certain conditions. Irrelevance (following Definitions 1 and 2) indicttias the feature is not
necessary at all. According to these definitions, it is clear that in predgample 1, featuré; is
strongly relevantf,, F; weakly relevant, anér,;, Fs irrelevant. An optimal subset should include
all strongly relevant features, none of irrelevant features, andseswf weakly relevant features.
However, it is not given in the definitions which of weakly relevant feegighould be selected and
which of them removed. Therefore, it is necessary to define featduendancy among relevant
features.

2.2 Defining Feature Redundancy

Notions of feature redundancy are normally in terms of feature correlatida widely accepted
that two features are redundant to each other if their values are completedyated (for example,
features~ andFs in Example 1). In reality, it may not be so straightforward to determine feature
redundancy when a feature is correlated (perhaps partially) with & fettares. We now formally
define feature redundancy in order to devise an approach to explicitlyifidend eliminate redun-
dant features. Before we proceed, we first introduce the definitienfe&ture’s Markov blanket
given by Koller and Sahami (1996).

Definition 3 (Markov blanket) Given a feature flet M C F (F ¢ M;), M; is said to be a Markov
blanket for Fiff

P(F-Mi—{F},C|FR, M) =P(F-M; —{R}, C| M.

The Markov blanket condition requires theli subsume not only the information thgt has
aboutC, but also about all of the other features. It is pointed out in Koller arith®& (1996) that
an optimal subset can be obtained by a backward elimination procedoren kasMarkov blanket
filtering: let G be the current set of featureS & F in the beginning), at any phase, if there exists
a Markov blanket foi within the currentG, F is removed fronG. It is proved that this process
guarantees a feature removed in an earlier phase will still find a Markakdtlan any later phase,
that is, removing a feature in a later phase will not render the previousigved features necessary
to be included in the optimal subset. According to previous definitions ofeatlevance, we can
also prove that strongly relevant features cannot find any Markakbta Since irrelevant features
should be removed anyway, we exclude them from our definition of ahirfeatures.

Definition 4 (Redundant feature)Let G be the current set of features, a feature is redundant and
hence should be removed from G iff it is weakly relevant and has a Mdnlkoket M within G .

From the property of Markov blanket, it is easy to see that a redundanire removed earlier
remains redundant when other features are removed. Figure 1 degiatsldationships between
definitions of feature relevance and redundancy introduced sd fdrols that an entire feature set
can be conceptually divided into four basic disjoint parts: irrelevantifea (1), redundant features
(11, part of weakly relevant features), weakly relevant but nedundant features (lll), and strongly
relevant features (IV). An optimal subset essentially contains all therfesin parts Ill and IV. It is
worthy to point out that although parts Il and Il are disjoint, differeattjtions of them can result
from the process of Markov blanket filtering. In previous Example 1eeitf F, or F3, but not
both, should be removed as a redundant feature.
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I: Irrelevant features II: Weakly relevant and
IIT: Weakly relevant but redundant features
non-redundant features IV: Strongly relevant features

III + IV: Optimal subset

Figure 1: A view of feature relevance and redundancy.

3. Efficient Feature Selection via Relevance and Redundancynalysis

We now review two major approaches in dealing with feature relevanceeghohdancy, analyze
their limitations for high-dimensional data, and then propose a new framesf@fficient feature
selection based on relevance and redundancy analysis.

3.1 Existing Approaches in Dealing with Relevance and Redundancy

As mentioned earlier, there exist two major approaches in feature seleictitividual evaluation
andsubset evaluatianindividual evaluation, also known as feature weighting/ranking (Blah a
Langley, 1997; Guyon and Elisseeff, 2003), assesses individagires and assigns them weights
according to their degrees of relevance. A subset of features is sdtented from the top of a
ranking list, which approximates the set of relevant features (ll, fit| B/ in Figure 1). With its
linear time complexity in terms of dimensionality; this approach is efficient for high-dimensional
data. However, it is incapable of removing redundant features becadsindant features likely
have similar rankings. As long as features are deemed relevant to thetlotgswill all be selected
even though many of them are highly correlated to each other. For higmsiomal data which may
contain a large number of redundant features, this approach mayceroekults far from optimal.

Many feature selection methods take the subset evaluation approachhahidles feature re-
dundancy with feature relevance. The diagram in Figure 2 exhibits a tnaalitfamework of
feature selection via subset evaluation (Liu and Motoda, 1998). Sgbsetation produces can-
didate feature subsets based on a certain search strategy. Eactatmndiuset is evaluated by a
certain evaluation measure and compared with the previous best one itletrés this measure.
If a new subset turns out to be better, it replaces the previous besttsuthe process of subset
generation and evaluation is repeated until a given stopping criterion ifieshtiDistinguished
from individual evaluation, evaluation measures used by this approadtefined against feature
subsets, taking into account the existence and effect of redunddintds. A feature subset selected
by this approach approximates the optimal subset (parts lll and IV in&uMany methods have
proven effective to some extent in removing both irrelevant featuresehdhdant features (John
et al., 1994; Koller and Sahami, 1996; Bell and Wang, 2000; Hall, 20B@wever, methods in
this framework can suffer from an inevitable problem caused by sear¢hrough feature sub-
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sets required in the subset generation step. Although there exist vagatistic search strategies
such as greedy sequential search, best-first search, and gégetithen (Liu and Motoda, 1998),
most of them still incur time complexit®(N?), which prevents them from scaling well to data sets
containing tens of thousands of features.

Original Subset Candidate Subset
—_—
Set Generation Subset Evaluation

Current Best Subset

topping
No riterio:

Yes

Selected Subset

Figure 2: A traditional framework of feature selection.

3.2 A New Framework of Efficient Feature Selection

From previous discussions, it is clear that in order to eliminate redundanires, the state-of-the-
art feature selection methods have to rely on the approach of subsetteva whichimplicitly
handles feature redundancy with feature relevance. These methogsociice better results than
methods without handling feature redundancy, but the high computatiosabtthe subset search
makes them inefficient for high-dimensional data. Therefore, in outtiealuwe propose a new
framework of feature selection which avoids implicitly handling feature rddnoy and turns to
efficient elimination of redundant features @aplicitly handling feature redundancy

Relevance definitions divide features into strongly relevant, weaklyaeteand irrelevant ones;
redundancy definition further divides weakly relevant features indomdant and non-redundant
ones. Our goal is to efficiently find the optimal subset (parts 1l and IMgufe 1). We can achieve
this goal through a new framework of feature selection (shown in Figucer@posed of two steps:
first, relevance analysis determines the subset of relevant featurembying irrelevant ones, and
second, redundancy analysis determines and eliminates redundargddeadm relevant ones and
thus produces the final subset. Its advantage over the traditional fiakneihsubset evaluation lies
in that by decoupling relevance and redundancy analysis, it circumsebgset search and allows a
both efficient and effective way in finding a subset that approximateptimal subset.

Original Relevance Relevant | Redundancy | Selected
_— . N —
Set Analysis Subset Analysis Subset

Figure 3: A new framework of feature selection.
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It is sensible to use efficient heuristic methods to approximate the computatielewdint fea-
tures and redundant features under our new framework for twemeasOn one hand, searching
for an optimal subset based on the definitions of feature relevanceduddancy is combinatorial
in nature. It is obvious that exhaustive or complete search is prohibittleaMarge number of
features. On the other hand, an optimal subset is defined based otl guptdation where the true
data distribution is known. Itis generally assumed (Mitchell, 1997; Miller 2@0at a training data
set is only a small portion of the full population, especially in a high-dimensgpace. Therefore,
it is not proper to search for an optimal subset from the training dataeassearching the training
data can cause over-fitting (Jensen and Cohen, 2000). We neghpoes approximation method.

4. A Correlation Based Method

Correlation is widely used in machine learning and statistics for relevanégsendn this section,
we first introduce our choice of correlation measure in Section 4.1, thesride our correlation-
based method for both relevance and redundancy analysis in Secti@nd.@resent and analyze
the algorithm in Section 4.3.

4.1 Correlation Measures

There exist broadly two types of measures for the correlation betweeratwlom variables: linear
and non-linear. Of linear correlation, the most well known measunegar correlation coefficient
For a pair of variablegX, Y), the linear correlation coefficieptis given by

2 (5 =X) (v = ¥0)

P \/g_(n —fiwlz(y -

wherex; is the mean oK, andyj is the mean o¥. The value op lies between -1 and 1, inclusive.
If X andY are completely correlate@,takes the value of 1 or -1; K andY are independenf is
zero. Itis a symmetrical measure for two variables. Other measures in tegooaare basically
variations of the above formula, such laast square regression err@nd maximal information
compression indefMitra et al., 2002). However, it is not safe to always assume lineaeletion
between features in the real world. Linear correlation measures maeraiilé to capture corre-
lations that are not linear in nature. It can also be observed that lingatatmn coefficient is not
suitable for nominal data.

Among non-linear correlation measures, many measures are based dorimation-theoretical
concept ofentropy a measure of the uncertainty of a random variable. The entropy ofableX
is defined as

zP Xi)log,(P(xi)) ,

and the entropy oK after observing values of another varialflés defined as

H(X]Y) = ZP Yi) ZP % | ¥j)10G2(P(xi | Yj)) ,

whereP(x) is the prior probabilities for all values &f, andP(x; | ;) is the posterior probabilities
of X given the values o¥. The amount by which the entropy &f decreases reflects additional
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information abouiX provided byY and is callednformation gain(Quinlan, 1993), given by
IG(X|Y)=H(X)—H(X]Y).

According to this measure, featuyeis regarded more correlated to featitehan to featurez,

if IG(X|Y)>I1G(Z]Y). Itis easy to prove that information gain is a symmetrical measure.
Symmetry is a desired property for a measure of correlations betweendggattiensures that the
order of two features ¥, Y) or (Y, X)) will not affect the value of the measure. Since information
gain tends to favor features with more values, it should be normalized withdbeesponding
entropy. Therefore, we choosgmmetrical uncertaintgPress et al., 1988), defined as

SU(X,Y):Z[ IG(X | Y) ]

H(X)+H(Y)

It compensates for information gain’s bias toward features with more vahesestricts its values

to the rang€0,1]. A value of 1 indicates that knowing the values of either feature completely
predicts the values of the other; a value of 0 indicates XhahdY are independent. In addition,

it still treats a pair of features symmetrically. Entropy-based measuresehamaiinal or discrete
features, and therefore continuous features need to be propentgtitisd (Liu et al., 2002a) in
order to use entropy-based measures.

4.2 Efficient Relevance and Redundancy Analysis

Using symmetrical uncertaintysJ)) as the correlation measure, we are ready to develop an approx-
imation method for both relevance and redundancy analysis under ouirar@ework introduced
in Section 3.2. We first differentiate two types of correlation between feafiimcluding the class).

Definition 5 (C-correlation) The correlation between any featurednd the class C is called C-
correlation, denoted by S .

Definition 6 (F-correlation) The correlation between any pair of featuresid F (i # j) is called
F-correlation, denoted by SY.

Aiming to achieve high efficiency, we calculafecorrelation for each feature, and heuristically
decide a featuré&; to be relevant if it is highly correlated with the claSsi.e., if SU ¢ >y, where
y is a relevance threshold which can be determined by users. The seleleeaht features are
then subject to redundancy analysis. Similarly, we can evaluate the tiomdbetween individ-
ual features for redundancy analysis without considering the ctoelbetween various feature
subsets. However, there are two difficulties in determining feature redeydvia pair-wisd--
correlation calculation: (1) when two features are not completely cordaleite each other, it may
be hard to determine feature redundancy and which one to be remowe)anmay still require
F-correlation calculation for a total (ﬁ% pairs, which is inefficient for high-dimensional data.
Below, we try to efficiently determine feature redundancy by substantiadlycieg the number of
feature pairs evaluated fét-correlation.

In Section 2, we apply Markov blanketsdmactlydetermine feature redundancy. When it comes
to approximatelydetermine feature redundancy, the key is to find approximate Markovetkafde
the selected relevant features. We assume that a feature with adacgerelation value contains
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by itself more information about the class than a feature with a sm@irrelation value. We
determine the existence of an approximate Markov blanket between a paorrefated features
F andF; based on theiF-correlation levelSU j as follows. WherSU; . > SU ¢, we choose to
evaluate whether featufg can form an approximate Markov blanket for featéy€instead off
for Fj) in order to maintain more information about the class. In addition, we heuligtics®e SU
as a threshold to determine whetherfeorrelationSU  is strong or not. An approximate Markov
blanket can be defined as follows.

Definition 7 (Approximate Markov blanket) For two relevant featuresjland F (i # j), Fj forms
an approximate Markov blanket for Ff SU; c > SU c and SY; > SU ¢ .

Recall that Markov blanket filtering, a backward elimination procedusetian a feature’s
Markov blanket in the current set, guarantees that a redundantdeatuoved in an earlier phase
will still find a Markov blanket in any later phase when another redunfsaitire is removed. It is
easy to verify that this is not the case for backward elimination based catardés approximate
Markov blanket in the current set. For instancerjifis the only feature that forms an approximate
Markov blanket for, andF, forms an approximate Markov blanket féy, after removing based
on Fj, further removingr; based orf will result in no approximate Markov blanket féf in the
current set. However, we can avoid this situation by removing a featuyendren it can find an
approximate Markov blanket formed by a predominant feature, definéallaws.

Definition 8 (Predominant feature) A relevant feature is predominant iff it does not have any
approximate Markov blanket in the current set.

Predominant features will not be removed at any stage. If a fe&ueseremoved based on
a predominant featur;j in an earlier phase, it is guaranteed that it will still find an approximate
Markov blanket (the samk;) in any later phase when another feature is removed. To summarize,
our method for redundancy analysis consists of (1) selecting a predaotrféadure, (2) removing all
features for which it forms an approximate Markov blanket, and (3) itegatieps (1) and (2) until
no more predominate features can be selected. An optimal subset cdarthbeeapproximated by
a set of predominant features.

4.3 Algorithm and Analysis

The approximation method for relevance and redundancy analysispddeefore can be realized
by an algorithm, named FCBF (Fast Correlation-Based Filter). It involvescdwnected steps:
(1) selecting a subset of relevant features, and (2) selecting preaoifeatures from relevant
ones. As shown in Figure 4, for a data §etvith N features and class, the algorithm finds a
set of predominant featuré&®es. In the first step (lines 2-7), it calculates tB& value for each
feature, selects relevant features iffg based on a predefined threshéldand orders them in a
descending order according to th&ld values. In the second step (lines 8-18), it further processes
the ordered lis§, to select predominant features. A feat#isethat has already been determined
to be a predominant feature can always be used to filter out other fedtureshichF; forms an
approximate Markov blanket. Since the feature with the higesbrrelation does not have any
approximate Markov blanket, it must be one of the predominant featuresheSiteration starts
from the first element iig;; (line 8) and continues as follows. For all the remaining features (from
the one right next t&; to the last one i), if F; happens to form an approximate Markov blanket
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input:  S(Fy,F,...,Fy,C) //atraining data set
o

I/l a predefined threshold
output: Shest /I a selected subset
1 begin
2 fori =1 toN do begin
3 calculateSU . for F;

4 if (SU¢ > d)

5 appends to S...;

2 et P Sist

7 orderS; in descendin@U . value;
8 F; = getFirstElementS,);

9 do begin

10 F etNextEleme JFi);

11 #(F 2> NULL) Bl

12 do begin

13 if (SU; >SU)

14 remover; from S,

15 F= getNextEIemet(xS,st, ,
16 end until == NULL);

17 getNextEIemerﬁS,st, Fi);

18 endunt £ == NULL):

%(9) SOQSI_ S’ISt’

Figure 4: FCBF Algorithm.

for K (line 13),F will be removed fronS,. After one round of filtering features based B the
algorithm will take the remaining feature right nextfpas the new reference (line 17) to repeat the
filtering process. The algorithm stops until no more predominant featarebe selected. Figure 5
illustrates how predominant features are selected with the rest featommega® as redundant ones.
In Figure 5, six features are selected as relevant ones and rant@dliag to theirC-correlation
values, withF; being the most relevant one. In the first roumkd,is selected as a predominant
feature, and~ andF,; are removed based di. In the second roundsys is selected, andfg is
removed based oR;. In the last roundFs is selected.

Figure 5: Selection of predominant features

We now analyze the time complexity of FCBF before an empirical study of itdexifig. As
we can see from Figure 4, major computation of the algorithm invadBlévalues forC- andF-
correlations, which has linear complexity in term of the number of instancedateaset. In terms
of dimensionalityN, to determine relevant features, the algorithm has linear compléxi); to
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determine predominant features from relevant ones (assuming alldeatre selected as relevant
ones), it has a best-case complexity\) when only one feature is selected and all of the rest of the
features are removed, and a worse-case compléxi#) when all features are selected. These time
complexity results are comparable to subset evaluation based on gregeysal search in which
features are, one at a time, added to the current subset (i.e., seqioewéatl selection) or removed
from the current subset (i.e., sequential backward elimination). Hawevgeneral cases whdn

(1 < k < N) features are selected, the number of evaluations performed by FCBF pidihlly be
much less (and certainly never more) than the number of evaluationsmpeddry greedy sequential
search because features removed in each round are not condidénednext round and FCBF
typically removes a large number of features (instead of only one by yesgliential search) in
each round. This makes FCBF substantially faster than algorithms of sauzdeation based on
greedy sequential search, as will be demonstrated by the running time risomgareported in
Section 5. The more features removed in an earlier round, the faster IECBIereover, selecting

a subset of relevant features in the first step can further improvesidieecy.

In summary, our method approximates relevance and redundancy atgl\ssikecting all pre-
dominant features and removing the rest features. It usesbathdF-correlations to determine
feature redundancy and combines sequential forward selection with diiomirsa that it not only
circumvents full pair-wisd--correlation analysis but also achieves higher efficiency than pure se-
guential forward selection or backward elimination. However, our methsdhsptimal due to the
way C- and F-correlations are used for relevance and redundancy analysis argpinoximates
that it uses. It is fairly straightforward to improve the optimality of the resultsdisidering differ-
ent combinations of features in evaluating feature relevance and r@doydvhich in turn increases
time complexity. Another way to improve result optimality is to find better heuristicstieroening
a feature’s approximate Markov blanket.

5. Empirical Study

In this section, we empirically evaluate the efficiency and effectivenessrohethod by comparing
FCBF with representative feature selection algorithms. We describeimgrgal setup in Section
5.1, discuss results on synthetic data and benchmark data in Sections 5.3 aespectively, and
summarize the findings in Section 5.4.

5.1 Experimental Setup

The efficiency of a feature selection algorithm can be directly measuréts bynning time over

various data sets. As to effectiveness, a simple and direct evaluatiomocrite how similar the

selected subset and the optimal subset are, but it can only be meagerrsgirthetic data for which
we know beforehand which features are irrelevant or redundamtreBbworld data, we often do
not have such prior knowledge about the optimal subset, so we useeitiietijye accuracy on the
selected subset of features as an indirect measure.

In terms of the above criteria, we limit our comparisons to the filter model as RERBHil-
ter algorithm designed for high-dimensional data. We choose reprégerdkyorithms from both
approaches (i.e., individual evaluation and subset evaluation). Oostlaig, from individual eval-
uation, is ReliefF (Robnik-Sikonja and Kononenko, 2003) which searébr nearest neighbors of
instances of different classes and weights features according to albthey differentiate instances
of different classes. Another algorithm, from subset evaluation, isiatian of CFS (Hall, 2000),
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denoted by CFS-SF (Sequential Forward). CFS exploits best-firstskased on some correlation
measure which evaluates the goodness of a subset by consideringitiugdoredictive ability
of each feature and the degree of correlation between them. Sequeniiald selection is used
in CFS-SF as initial experiments show CFS-SF runs much faster to protuitar sesults than
CFS. A third one, also from subset evaluation, is a variation of FOCUS (Allmuand Dietterich,
1994), denoted by FOCUS-SF. FOCUS exhaustively examines alltsuliSeatures, selecting the
minimal subset that separates classes as consistently as the full set isaprohibitively costly
even for data sets with moderate dimensionality. FOCUS-SF replaces sxbaearch in FOCUS
with sequential forward selection. In our experiments, we heuristicallfheatlevance threshoid

to be theSU value of the|N/logN | th ranked feature for each data set. To test how the selection of
threshold affects the performance of FCBF, we also include in our casaparthe results of FCBF
with y set to the default value 0. We use FGRdy to represent a version of FCBF with the former
setting, and FCBf with the latter setting in the rest of the paper.

In addition to feature selection algorithms, we use two learning algorithms, N¥tieq and
Frank, 2000) and C4.5 (Quinlan, 1993), to evaluate the predictive@ncon the selected subset of
features. All these selected algorithms are from Weka's collection (Wittéi-eank, 2000). FCBF
is also implemented in Weka environment.

5.2 Results and Discussions on Synthetic Data

We use three synthetic data sets to illustrate the strengthes and limitations of R&EB&mapare it
with ReliefF, CFS-SF, and FOCUS-SF. The first data set is the widely@sgedl data (John et al.,
1994) which contains six Boolean featuré®{Al, BO, B1, |, R) and a Boolean clasg defined
byY = (AOAAL)V (BOABL). FeaturefO, Al, BO, andB1 are independent to each other, feature
I is uniformly random, and featuri® matches the clasg 75% of the time. It is obvious that an
optimal subset include&0, Al, BO, andBL. | is irrelevant, andR is redundant. The other two data
sets, Corral-47 and Corral-46, are obtained by introducing more iaeideatures and redundant
features to the original Corral data. As its name says, Corral-47 cordaioizl of 47 Boolean
features including 5 original featuré§€, A1, BO, B1, andR, 14 irrelevant features, and 28 additional
redundant features. Among the 14 irrelevant features, only two f=aaure uniformly random and
each of the remaining 12 is completely correlated with either of the two. Amonggtiaeditional
redundant features, for eachAd, Al, BO, andB1, there are 7 features that are correlated with it at
various levels. The ratios of non-matches arg/Q6,2/16,...,6/16 respectively. Corral-46 is the
same as Corral-47 except that it excluékegable 1 shows features selected by each algorithm. We
useA0, Al, BO, B1 combined with subscripts 0, ..., 6 to represent the newly introduced redundant
features, with the value of the subscripts indicating the ratio of non-matches.

We can see that for Corral, all the algorithms in comparison remove the mretlévaturd ,

but fail to remove the redundant featiRe FCBRjog) misses three features due to the setting of an
improper threshold. For Corral-47, these algorithm also remove all tHevamt features, but fail

to removeR. The difference is that FCBg), FCBRp), and CFS-SF successfully remove all the
additional redundant features. For Corral-46, only Fgdgfand FCBFy) find the optimal subset.

In Corral-47 and Corral-46, the threshold in FG§ does not affect the selection results. These
results suggest that when feature redundancy can only be identiBed ba feature subsets (e.g.,
the redundancy oR is defined by the subset @0, Al, BO, andB1), FCBF may not successfully
remove redundant features. This is a hard problem for most heuristichsalgorithms as well.
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FCBRiog) FCBRy) Reliefr CFS-SF FOCUS-SF

Corral R A0 R AOALBO AOBOR B1 A0 AL BOBL R
Bl Al R
Corral-47 | RAOALBO | RAOALBO | RB1; AOADp AOAL BOBL AOALAL, BO
B1 B1 B1 B1, BO B0y R BLR
B0, AL Alg
Corral-46 | AOALBOBL | AOALBOBL | AOAQy B1; B0 | AOAO; A0z AL | AOALAL; Aly
BOo B1Bly B0, | Al, Al, BOBO, BO B1
ALAL, B1B1,

Table 1: Features selected by each feature selection algorithm on sydttatic

However, in high-dimensional data which often contains a large portiomedéwant and/or redun-
dant features (as in Corral-47 and Corral-46), FCBF can effdgtieenove redundant features.
We next further verify its effectiveness as well as efficiency cong&rether algorithms through
various real-world data of high dimensionality.

5.3 Results and Discussions on Benchmark Data

In various machine learning domains, there are two forms of high-dimenslatea Traditionally,
the dimensionality is usually thought high if data contains tens or hundredatafés. In this form
of data, the number of instances is normally much larger than the dimensionalitgwi domains
such as text categorization and genomic microarray analysis, the dimdigignan the order of
thousands or even higher, and often greatly exceeds the number otestd herefore, we evaluate
our method in comparison with others on high-dimensional data of both forms.

5.3.1 UCIBENCHMARK DATA

Title Features| Instances| Classes
Lung-cancer 56 32 3
Promoters 57 106 2
Splice 60 3190 3
USCensus90 67 9338 3
ColL2000 85 5822 2
Chemical 150 936 3
Musk2 166 6598 2
Arrhythmia 279 452 16
Isolet 617 1560 26
Multi-features 649 2000 10

Table 2: Summary ofJCI benchmark data sets.

All together 10 data sets in the traditional form are selected from the UChMad_earning
Repository and the UCI KDD Archivé These data sets contain various numbers of features, in-
stances, and classes, as shown in Table 2. For each data set, we fidtiie feature selection algo-

1. http://www.ics.uci.edwtmlearn/MLRepository.html
2. http://kdd.ics.uci.edu
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rithms in comparison, and obtain the running time and selected features lficailgadthm. For data
sets containing features with continuous values, we apply the MDL disdietizaethod (Fayyad
and Irani, 1993) before applying FCBF, CFS-SF, and FOCUS-SFREbGefF, we use 5 neigh-
bors and 30 instances throughout the experiments as suggested bk-Ridomja and Kononenko
(2003). We then apply NBC and C4.5 on both the original data set andoédiod newly obtained
data sets (with only selected features), and obtain overall accura®¢fofdL.cross-validation. All

experiments were conducted on a Pentium IV PC with 1 GB RAM.

Table 3 records the running time for each feature selection algorithm. Welrserve that
FCBRq) is consistently faster than CFS-SF and FOCUS-SF. The time savings fr@f§®@e-
come more obvious when the data dimensionality increases. In many casemiggompared
with FOCUS-SF, the time savings are in degrees of magnitude. These resiflgstive superior
computational efficiency of sequential forward selection with elimination agpdie FCBF over
greedy sequential search applied by CFS-SF and FOCUS-SF. Coampbetveen FCBf;, and
ReliefF shows that ReliefF is unexpectedly slow even though its time complexityeiarlio di-
mensionality. The reason lies in that searching for nearest neighbordigffRinvolves distance
calculation which is more costly than the calculation of symmetrical uncertaintgr\dle compare
FCBF with FCBRyog), it is clear that the setting of a larger relevance threskdidther speeds
up FCBF.

Title FCBRiog) | FCBRp) | ReliefF | CFS-SF| FOCUS-SF
Lung-cancer 0.001 0.02 0.09 0.05 0.08
Promoters 0.001 0.02 0.06 0.03 0.16
Splice 0.20 0.55 0.89 0.55 16.59
USCensus90 0.30 0.50 2.94 0.52 77.67
ColL2000 0.25 0.50 4.25 1.98 143.94
Chemical 0.05 0.05 1.36 0.28 6.56
Musk?2 0.53 0.88 9.55 4.84 85.78
Arrhythmia 0.06 0.08 1.19 0.78 13.70
Isolet 0.42 3.05 10.05 93.94 107.33
Multi-Features 1.19 19.42 11.42 71.00 67.56

Table 3: Running time (seconds) for each feature selection algorithdCordata.

Table 4 records the number of features selected by each feature selgtidthm. We can see
that all these algorithms achieve significant reduction of dimensionality bgtsejeonly a small
portion of the original features. FCR#g) on average selects the smallest number of features.

Tables 5 and 6 show the 10-fold cross-validation accuracy of NBC d@nfl i@spectively. For
each data set, we conduct Student’s paired two-tailed t-Test in ordealicaé the statistical sig-
nificance of the difference between two averaged accuracy valonesesulted from FCBfg) and
the other resulted from one of FC@E the full set, ReliefF, CFS-SF, and FOCUS-SF. Each value
in a p-val column records the probability associated with the t-Test. The smalleathe, the more
significant the difference of the two average values is. The last row (LYW each table summa-
rizes over all data sets the losses/wins/ties in accuracy (at significaet® l&ycomparing various
feature sets with those selected by FG&J: We can see that in general FCRF) achieves similar
accuracy as FCBEy. Therefore, the effectiveness of FCBF can be verified from theviatig two
general trends: (1) FCBg) improves or maintains the accuracy of both NBC and C4.5, and the
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Title FCBRiog) | FCBFRp) | ReliefF | CFS-SF| FOCUS-SF
Lung-cancer 4 6 5 8 4
Promoters 6 6 4 4 4
Splice 9 22 11 6 10
USCensus90 3 4 2 1 13
ColL2000 3 5 12 10 29
Chemical 4 5 7 7 11
Musk?2 2 2 2 10 11
Arrhythmia 5 12 25 25 24
Isolet 5 32 23 137 11
Multi-Features 27 130 14 87 7

| Average | 7 | 22 | 11 | 30 | 12 |

Table 4. Number of features selected by each feature selection algorithi@lodata.

FCBRjog) FCBFg Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Lung-cancer 83.33 86.67 | 0.34 || 78.33| 0.34 || 84.17| 0.85 86.67 | 0.34 87.5 0.46
Promoters 93.27 93.27 1 91.55| 0.55 87.82| 0.25 95.18 | 0.17 90.45 | 0.40
Splice 93.95 96.14 | 0.00" || 95.52 | 0.00" || 91.32 | 0.00 || 93.54 | 0.24 || 94.36 | 0.08"
USCensus90|| 97.94 97.88 | 0.19 93.49 | 0.00° || 97.97| 0.17 97.99 | 0.65 97.87 | 0.44
ColL2000 93.94 93.92| 0.34 || 78.68 | 0.00° || 93.89 | 0.66 92.92 | 0.01" || 83.22 | 0.00"
Chemical 71.91 67.73 | 0.02- || 60.90 | 0.00" || 71.26 | 0.77 70.51| 0.35 || 66.35 | 0.00~
Musk2 84.59 84.59 1 84.78 | 0.51 84.59 1 64.87 | 0.00° || 83.53 | 0.01°
Arrhythmia 67.48 65.73 | 0.45 60.88 | 0.01" || 55.79 | 0.00" || 69.05| 0.45 69.06 | 0.56
Isolet 50.06 83.33 | 0.00" || 84.10 | 0.00" || 60.90 | 0.00" || 87.31| 0.00" || 71.03 | 0.00"
Multi-feat 95.9 95.65 | 0.50 94.1 | 0.01" || 67.65| 0.00 || 96.15| 0.64 93.7 | 0.02°
L/WIT - 1/217 5/2/3 3/1/6 21117 41214

Table 5: Accuracy oNBC on selected features falCl data: Acc records 10-fold cross-validation
accuracy raté%) and p-Val records the probability associated with a paired two-tailed t-
Test. The symbols+” and “—" respectively identify statistically significant (at 0.1 level)
wins or losses over FCBy).

improvement is more pronounced for NBC; and (2) FG&Jcan achieve similar or even higher
accuracy compared with other algorithms.

5.3.2 NIPSBENCHMARK DATA

Three data sets with very high dimensionality but relatively few instancesedeeted from the
NIPS 2003 feature selection benchmark data $eAd. these data sets contain two classes and a
large number of artificially introduced random features in addition to redufes. A summary of
the data sets is given in Table 7. For each data set, we conduct experfoilEwwing the same
procedure as that used in UCI data. The results are shown in Table$@®,éhd 11.

From Table 8, we observe similar trends as those from UCI data excegijHar Dexter and
Dorothea data, CFS-SF did not produce running time results (henceemsdtiected features nor

3. http://clopinet.com/isabelle/Projects/NIPS2003/
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FCBRog) FCBFg Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Lung-cancer 86.67 86.67 1 80.83 | 0.17 84.17| 0.34 || 84.17| 0.34 || 84.17| 0.34
Promoters 80.18 80.18 1 78.09 | 0.42 82.36 | 0.55 80.18 1 81.36 | 0.67
Splice 94.01 94.14| 0.64 || 93.98| 0.89 90.53 | 0.00" || 93.39| 0.00" || 93.79 | 0.11
USCensus90|| 98.12 98.12 1 98.19 | 0.39 98.12 1 97.99 | 0.00° || 98.21| 0.11
ColL2000 94.02 94.02 1 93.87 | 0.12 94.02 1 94.02 1 93.97 | 0.39
Chemical 95.41 95.41 1 94.13 | 0.01" || 9594 | 0.14 || 9594 | 0.14 || 95.31| 0.86
Musk2 91.35 91.35 1 96.91 | 0.00" |[ 88.00 | 0.00 |[ 95.79| 0.00" || 95.45| 0.00"
Arrhythmia 71.47 68.80 | 0.19 67.70 | 0.04~ || 69.02 | 0.07" || 68.58 | 0.13 67.02 | 0.04~
Isolet 49.17 75.77 | 0.00" |[ 79.87 | 0.00" || 59.10 | 0.00" || 81.35| 0.00" || 68.84 | 0.00"
Multi-feat 92.45 93.65 | 0.04" 94.3 | 0.017 || 78.65 | 0.00~ 94.7 | 000" [[ 91.75| 0.42
L/WIT - 0/2/8 2/3/5 4/1/5 2/3/5 1/2/7

Table 6: Accuracy o€4.50n selected features foICl data: Acc records 10-fold cross-validation
accuracy raté%) and p-Val records the probability associated with a paired two-tailed t-
Test. The symbols+” and “—" respectively identify statistically significant (at 0.1 level)

wins or losses over FCBy).

accuracy results) because the program ran out of memory after a péonsiderably long time
due to its quadratic space complexity; and (2) FCBF achieves tremendous timgssor this
group of data sets, for instance, roughly 1 minute by FgeBFversus 4.5 hours by FOCUS-SF in
Dorothea data. Results in Table 9 show that all the algorithms in comparisdnaraatically reduce
the dimensionality for this group of data sets. In spite of its impressive effigciand capability of
dimensionality reduction, the effectiveness of FCBF can still be clearlyaled by the results in
Tables 10 and 11. As we can see, FCBF either improves or maintains the@cofi both NBC
and C4.5 for all the three data sets. In addition, for each of the threeetatdlse highest accuracy

Features Instances
Title Total Real | Random|| Total | Class 1| Class 2
Arcene 10000 | 7000 3000 100 44 56
Dexter 20000 | 9947 | 10053 300 150 150
Dorothea| 100000| 50000| 50000 800 78 722

Table 7: Summary oNIPS benchmark data sets.

is achieved by applying NBC on the feature subset selected by FCBF.

Title FCBRiog) | FCBRg | ReliefF | CFS-SF| FOCUS-SF
Arcene 0.42 0.75 9.16 | 1108.66 21.39
Dexter 1.80 2.63 45.43 N/A 928.78
Dorothea| 68.95 393.80 | 349.27 N/A 16470.92

Table 8: Running time (seconds) for each feature selection algorithtiR® data.
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Title FCBRog) | FCBRy | ReliefF | CFS-SF| FOCUS-SF
Arcene 24 39 45 50 4
Dexter 35 35 71 N/A 23
Dorothea 50 96 137 N/A 21

Table 9: Number of features selected by each feature selection algornithiP& data.

FCBRjog) FCBFRy Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc | p-Val Acc p-Val
Arcene 91.0 93.0 0.34 69.0 | 0.00° 69.0 | 0.02° || 92.0 | 0.68 59.0 | 0.00”
Dexter 90.0 90.0 1 88.0 0.26 || 73.00 | 0.00" N/A | N/A 90.0 1
Dorothea 97.5 98.38 | 0.01" || 90.25| 0.00 || 94.38 | 0.00" N/A | N/A 95.25 | 0.00~

Table 10: Accuracy ofNBC on selected features fadIPS data: Acc records 10-fold cross-
validation accuracy ratg) and p-Val records the probability associated with a paired
two-tailed t-Test. The symbolst” and “—” respectively identify statistically significant
(at 0.1 level) wins or losses over FCgF).

5.4 Summary

From the previous empirical study, we can conclude that FCBF can efficechieve high degree
of dimensionality reduction and enhance or maintain predictive accuracyselitbted features. Its
proven efficiency and effectiveness compared with other algorithmeghrearious synthetic and
benchmark data sets suggest that FCBF is practical for feature selethagh-dimensional data.
It is worthy to emphasize that feature subsets selected by FCBF areplisddrom the choice
of learning algorithms. In other words, FCBF does not directly aim to irserélae accuracy of a
particular learning algorithm as wrapper algorithms do. In order to actietter accuracy within
affordable time, a wrapper algorithm based on an intended learning algaréh be applied to the
significantly reduced subset obtained from FCBF.

In FCBF, there is one parameter, the relevance thresholis consistently shown from the
benchmark data, different settingsyodffect the speed of FCBF. The closgis set to 1, the faster
FCBF is. As shown from Corral-47 and Corral-46 as well as many ofdénetimark data sets which
may contain a large number of irrelevant and/or redundant featuresdisyy up the algorithm by

FCBRjog) FCBFRy Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc | p-Val Acc p-Val
Arcene 83.0 82.0 | 0.76 76.0 0.17 65.0 | 0.04” || 79.0 | 0.40 75.0 | 0.26
Dexter 83.67 83.67 1 76.33 | 0.02° || 76.67 | 0.08" N/A | N/A 90.00 | 0.01F
Dorothea 92.88 93.0 | 0.76 || 90.38 | 0.01" || 93.38| 0.68 N/A | N/A 96.5 | 0.00"

Table 11: Accuracy oiC4.5 on selected features fadIPS data: Acc records 10-fold cross-
validation accuracy ratg) and p-Val records the probability associated with a paired
two-tailed t-Test. The symbolst” and “—” respectively identify statistically significant
(at 0.1 level) wins or losses over FCRf).
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settingyto a reasonably large value does not sacrifice the goodness of thiedalglosets. However,
a close look at the accuracy of individual data sets in Tables 5 and élseift in certain cases
(e.g., Isolet data), FCBfgg) results in significantly reduced accuracy than F¢B#&ue to the setting
of overly high threshold. Therefore, when we do not have prior kedge about data, an easy and
safe way of applying FCBF is to seto the default value 0.

6. Conclusions

In this paper, we have identified the need for explicit redundancy dadlygeature selection,
provided a formal definition of feature redundancy, and investigategttatonship between feature
relevance and redundancy. We have proposed a new framewoffcidre feature selection via
relevance and redundancy analysis, and a correlation-based metiid wgesC-correlation for
relevance analysis and bdth andF-correlations for redundancy analysis. A new feature selection
algorithm FCBF is implemented and evaluated through extensive experimempagog with three
representative feature selection algorithms. The feature selection mwuftsther verified by two
different learning algorithms. Our method demonstrates its efficiency d&octigéness for feature
selection in supervised learning in domains where data contains many inesg@or redundant
features.

Some future works are planed along the following directions. First, sincemgtrical uncer-
tainty measure only handles nominal or discrete values, our current megfjogles continuous
values be discretized, which opens the opportunity to investigate howsatliffdiscretization meth-
ods affect the performance of FCBF. Second, it would be interestingpiore measures that can
handle all types of values or ways of combining different measuresrunaddramework of rele-
vance and redundancy analysis. Another direction is to investigate howeibiod can be extended
to deal with regression problems in which the class contains continuoussvailmreover, addi-
tional effort is needed to experiment our method on genomic microarrayfatatgormative gene
selection and investigate how small samples affect the performance akfsataction.
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