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Abstract
It has been recently shown that sharp generalization bounds can be obtained when the function
class from which the algorithm chooses its hypotheses is “small” in the sense that the Rademacher
averages of this function class are small. We show that a new more general principle guarantees
good generalization bounds. The new principle requires that random coordinate projections of the
function class evaluated on random samples are “small” with high probability and that the random
class of functions allows symmetrization. As an example, we prove that this geometric property
of the function class is exactly the reason why the two lately proposed frameworks, the luckiness
(Shawe-Taylor et al., 1998) and the algorithmic luckiness (Herbrich and Williamson, 2002), can be
used to establish generalization bounds.
Keywords: Statistical learning theory, generalization bounds, data-dependent complexities, coor-
dinate projections

1. Introduction

Generalization bounds are used to show that, with high probability, functions produced by a learning
algorithm have a small error, and as such, can be used to approximate the unknown target. For many
years, such bounds were obtained by deviation estimates of empirical means from the actual mean,
uniformly over the whole class of functions from which the algorithm produces its hypothesis. Thus,
classes which satisfy the uniform law of large numbers (so-called uniform Glivenko-Cantelli or GC
classes) have played a central role in Machine Learning literature. More recently, other methods
of deriving generalization bounds were developed, in which the “size” of the function class from
which the algorithm chooses a hypothesis is not specified a priori. Examples of such methods are
the luckiness (Shawe-Taylor et al., 1998) and the algorithmic luckiness (Herbrich and Williamson,
2002) frameworks, but although in both cases one can obtain generalization bounds, they seem to
be based on completely different arguments.

In this article, we show that the bounds obtained in all these frameworks follow from the same
general principle. This principle requires that coordinate projections of a function subclass on ran-
dom samples are “small” with high probability.

We consider the following setting for the learning problem: let Ω be a measurable input space,
t : Ω −→ R an unknown real-valued target function, H = {h |h : Ω −→ R} a class of hypothesis
functions, and µ an unknown probability distribution on Ω. Let (X1, ...,Xn) ∈ Ωn be a finite training
sample, where each Xi is generated randomly, independently, according to µ. Based on the values
of the target function on this sample, (t(X1), ..., t(Xn)), the goal of a learning algorithm is to choose
a function h∗ ∈ H which is a good estimator of the target function t. A quantitative measure of how
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well a function h ∈ H approximates t is given by a loss function l : R×R −→ R. Typical examples
of loss functions are the 0-1 loss for classification defined by l(r,s) = 0 if r = s and l(r,s) = 1 if
r 6= s or the square-loss for regression tasks l(r,s) = (r − s)2. In what follows we will assume a
bounded loss function and therefore, without loss of generality, l : R×R −→ [−1,1]. For every
h ∈ H we define the associated loss function lh : Ω −→ [−1,1], lh(x) := l(h(x), t(x)) and denote by
F = {lh : Ω −→ [−1,1] |h ∈ H} the loss class associated with the learning problem. If h∗ is the best
estimate for t in H, we call F ′ = {lh − lh∗ |h ∈ H} the excess loss class.

The best estimate for t is defined to be the h∗ ∈ H for which the expected loss (also called risk)
over all possible observations is as small as possible, that is,

∫
lh∗(x)dµ(x) = Eµlh∗ ≈ infh∈H Eµlh.

Empirical risk minimization algorithms are based on the philosophy that it is possible to approx-
imate this expectation with the empirical mean, and choose instead a hypothesis ĥ ∈ H for which
1
n ∑n

i=1 lĥ(xi)≈ infh∈H
1
n ∑n

i=1 lh(xi). Therefore, the relationship between expected and empirical loss
is of crucial importance for the performance of these learning algorithms.

In the classical approach to obtain generalization bounds, called GC-type bounds, one investi-
gates the probability that, for any hypothesis in the class, the deviation of the empirical mean from
the actual mean of its associated loss function is larger than a given threshold, that is,

Pr
{

sup
f∈F

∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣ ≥ t

}

, (1.1)

where µ is a probability measure on Ω, X1, ...,Xn are independent random variables distributed
according to µ, F is the loss class associated with the learning problem, and Eµ f denotes E f (Xi).

Classes of functions F which, independently of the underlying measure µ, satisfy the law of
large numbers, that is, the probability (1.1) tends to 0 as n goes to infinity uniformly in µ, are called
uniform Glivenko-Cantelli classes. For these classes learning is possible. Historically, uniform
Glivenko-Cantelli classes were characterized by a finite combinatorial dimension (e.g., a finite VC
dimension in the 0,1-case) (see Vapnik and Chervonenkis, 1971; Alon et al., 1997). The ability to
bound the tails of the random variable in (1.1) is therefore due to the fact that the class F is “small”
in some sense.

In Mendelson (2002a,b) it has been shown that parameters which also characterize the uniform
Glivenko-Cantelli property are the uniform Rademacher averages of the class F , defined as

Rn(F) := sup
{x1,...,xn}⊂Ωn

Eε sup
f∈F

∣
∣

n

∑
i=1

εi f (xi)
∣
∣,

where (εi)
n
i=1 are independent, symmetric, {−1,1}-valued random variables, also known as Rademacher

random variables. The necessary and sufficient condition for a class F to be a uniform Glivenko-
Cantelli class is that Rn(F) = o(n). In this case, tail estimates for (1.1) which are independent of
the underlying measure µ can be as fast as the order of e−cnt2

. Therefore, the Rademacher averages
Rn(F) seem to be a reasonable notion of “size” for a function class F in the context of learning via
the uniform law of large numbers.

It was shown in Mendelson (2002b) that—if F satisfies mild structural assumptions—it is pos-
sible to derive sharper bounds on the learning problem by bounding the probability

Pr
{

∃ f ∈ F,
1
n

n

∑
i=1

f (Xi) ≤ t, Eµ f ≥ 2t
}

(1.2)
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instead of (1.1). The difference in the two cases is that in (1.1) one controls the deviation of the
empirical means from the actual one for all the functions in the class, whereas in (1.2) the con-
trol is only for functions with “small” empirical mean, that is, potential minimizers for the actual
mean. The tail estimates for (1.2) can be as good as e−cnt instead of e−cnt2

and are governed by the
Rademacher averages Rn(F t) of the class F t := { f ∈ F : Eµ f 2 ≤ t}.

In other words, in both these cases measure independent estimates depend on the fact that
for all coordinate projections, the projected sets

{(
f (x1), ..., f (xn)

)
: f ∈ F

}
and respectively

{(
f (x1), ..., f (xn)

)
: f ∈ F t

}
are small in the sense that they have small Rademacher averages.

Clearly, this is a property of the class F , and if one wishes to obtain useful bounds, one has to
assume a priori that F is small.

In this article we show that the fact that classes have “small” coordinate projections with high
probability (for a fixed probability measure) is the reason that the tails of (1.1) and (1.2) are well
behaved. More surprising is the fact that this is also the reason why several other (seemingly very
different) approaches yield generalization bounds.

The method of analysis we use is a combination of a symmetrization with respect to a random
subclass and sharp concentration results. The need to investigate random subclasses is simple, as
the starting point is that, ultimately, one wants to control the generalization ability only for the
hypothesis functions which are reachable by the specific learning algorithm when presented with
the actual training sample. Therefore, it suffices to obtain estimates on

Pr
{

sup
f∈F ′

∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣ ≥ t

}

, (1.3)

where F ′ ⊂ F and f̂ ∈ F ′, where f̂ is the loss function associated with the hypothesis produced by
the algorithm from the sample (X1, . . . ,Xn). Although one can hope that F ′ has a smaller “size” than
F , it is not possible to use the classical uniform generalization bounds because F ′ depends on the
random training sample and could change with the sample.

The outline of this paper is as follows: in Section 2 we will first present a symmetrization proce-
dure which is performed with respect to a random subclass of functions. The proof is a modification
of the original proof of the standard symmetrization argument. The probability in Equation (1.3) can
be therefore related to the probability of having large Rademacher sums for the (random) coordinate
projections of this random subclass. Sharp generalization bounds can be obtained when the “size”
of the set of coordinate projections of the random subclass is “small” in the sense that with high
probability the Rademacher averages associated with a random projection of a random subclass are
small (Corollary 2.5). We conclude that the general principle which ensures learnability and fast
error rates consists of the combination of three main ingredients: a symmetrization procedure, a
sharp concentration inequality, and a small “size” for the set of random coordinate projections.

In Section 3 we show how apparently different approaches fall within this general framework.
In Section 3.1 we present the GC case (1.1) as an easy corollary of the symmetrization procedure.
It is considerably more difficult to obtain the sharp rates for (1.2), a fact which is demonstrated in
Section 3.2. In both these examples, the class whose coordinate projections have to be controlled is
not random, but a deterministic subset of F .

There are several examples in which one really requires random subclasses of F . The examples
we shall present are of the luckiness and algorithmic luckiness frameworks. The reason we chose
these examples and not others is because our methods give considerably shorter proofs that seem to
clarify the reason why luckiness and algorithmic luckiness work to the extent that they do.
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In the luckiness and algorithmic luckiness frameworks, it is possible to avoid the detour via the
worst-case quantity in (1.1) and to derive bounds using additional prior knowledge on the learning
algorithm or on the training sample. The bounds stated in these approaches are, as opposed to the
existing classical ones, data- or algorithm-dependent.

In the luckiness framework (Shawe-Taylor et al., 1998), prior knowledge about the connection
between the actual sample and the functions in F is quantified through a luckiness function. A
“fortunate” property of this luckiness function (ω-smallness) ensures good tail estimates for (1.3).
One example for a luckiness function is the size of the margin for linear classifiers.

The algorithmic luckiness framework (Herbrich and Williamson, 2002) generalizes the lucki-
ness framework. Prior knowledge about the link between the functions learned by the algorithm
and the actual sample are formulated through an algorithmic luckiness function whose property of
“ω-smallness” enables one to bound the generalization error.

Although there are no examples in which these methods yield results clearly better than other ap-
proaches, one merit of these two frameworks is that they set up a possible theoretical basis that could
enable one to directly estimate data-dependent and algorithm-dependent generalization bounds. Un-
fortunately, the “ω-smallness” property is somewhat technically complicated and seems unnatural.
The notion of complexity for the function class employed in these frameworks is covering numbers,
and it was unexplored how these frameworks link to approaches using Rademacher averages as a
notion of size.

We show that the ω-smallness condition is just a way of ensuring that a random coordinate pro-
jection of the random set is “small” and this suffices to recover the original generalization bounds.
Hence, both luckiness and algorithmic luckiness fall within the general framework.

Note also that other examples of generalization bounds for data-dependent hypothesis classes
that could be obtained using our methods are presented in Gat (1999) and Cannon et al. (2002).
In fact, the proofs in Gat (1999) and Cannon et al. (2002) are based on a similar symmetrization
argument. The notion of “size” which is employed is simply that of cardinality, and thus these results
easily fall within the framework presented here (for details see Mendelson and Philips, 2003).

We end this introduction with some notation which will be used throughout the article. In
the following, F is a class of real-valued functions defined on a measurable space Ω which take
values in [−1,1] and µ is a probability measure on Ω. Ωn denotes the product space Ω× ·· ·×Ω.
Let X1, ...,Xn be independent random variables distributed according to µ and let (Y1, ...,Yn) be an
independent copy of (X1, ...,Xn). µn denotes the random empirical probability measure supported
on {X1, ...,Xn}, that is, µn := n−1 ∑n

i=1 δXi . Prµ and Eµ are the probability and the expectation with
respect to µ and PrX and EX denote the probability and the expectation with respect to the random
vector X = (X1, . . . ,Xn) (and therefore with respect to µn). Eµ f is the expectation and var( f ) is the
variance of the random variable f (Xi). In general, for any random variable Z, PrZ and EZ are the
probability and the expectation with respect to the distribution of Z.

Let F/X be the random set {( f (X1), ..., f (Xn)
)

: f ∈ F}, that is, the coordinate projection of the
set F onto the random set of coordinates X . VC(F) is the VC-dimension of F if F is a boolean class
of functions.

Set `n
p to be R

n with the norm ‖x‖p :=
(

∑n
i=1 |xi|p

)1/p
and put Bn

p to be the unit ball of `n
p. `n

∞
is R

n endowed with the norm ‖x‖∞ := sup1≤i≤n |xi|, let L∞(Ω) be the set of bounded functions on
Ω with respect to the norm ‖ f‖∞ := supω∈Ω | f (ω)|, and denote its unit ball by B

(
L∞(Ω)

)
. For a

probability measure µ on a measurable space Ω and 1 ≤ p < ∞, let Lp(µ) be the space of measurable
functions on Ω with a finite norm ‖ f‖Lp(µ) := (

∫ | f |pdµ)1/p.
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Let (Y,d) be a metric space. If F ⊂ Y then for every ε > 0, N(ε,F,d) is the minimal number of
open balls (with respect to the metric d) needed to cover F . A corresponding set {y1, ...,ym} ⊂Y of
minimal cardinality such that for every f ∈ F there is some yi with d( f ,yi) < ε is called an ε-cover
of F . For 1 ≤ p < ∞, denote by N

(
ε,F,Lp(µn)

)
the covering number of F at scale ε with respect

to the Lp(µn) norm. Similarly, one can define the packing number at scale ε, which is the maximal
cardinality of a set {y1, ...,yk} ⊂ F such that for every i 6= j, d(yi,y j) ≥ ε. Denote the ε-packing
numbers by M(ε,F,d) and note that for every ε > 0, N(ε,F,d) ≤ M(ε,F,d) ≤ N(ε/2,F,d). If S is a
set, we denote its complement by Sc.

Finally, throughout this article all absolute constants are denoted by c, C or K. Their values may
change from line to line, or even within the same line.

2. Symmetrization

For every integer n, let Fn and F sym
n be set-valued functions which assign to each σn ∈ Ωn a sub-

set of F . We assume that F sym
n is invariant to permutations, that is, for every σn ∈ Ωn and every

permutation π(σn) of σn, Fsym
n (σn) = F sym

n (π(σn)), in which case we say that F sym
n is symmetric.

The question we wish to address in this section is how to estimate the probability

PrX

{

sup
f∈Fn(σn)

∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣ ≥ t

}

, (2.1)

where σn = (X1, ...,Xn) is a random sample. Note that the worst-case probability (1.1) is a special
case of (2.1), where Fn is the constant function mapping every sample to the whole function class
F , Fn(σn) = F . Another extreme case occurs when Fn(σn) = { f̂}, where f̂ is the loss function
associated with the hypothesis produced by a learning algorithm from the sample σn.

We will show that by employing an additional assumption on the functions Fn and F sym
n which

relates the random subsets Fn(σn) to symmetric random subsets dependent on a double-sample, it
is possible to upper bound (2.1) in terms of Rademacher sums associated with sets of coordinate
projections.

Assumption 2.1 There exists a constant δ > 0 such that for every t > 0,

PrX×Y

{

∃ f ∈ Fn(σn),
∣
∣
∣
1
n

n

∑
i=1

(
f (Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

≤

PrX×Y

{

∃ f ∈ Fsym
2n (σn,τn),

∣
∣
∣
1
n

n

∑
i=1

(
f (Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

+δ, (2.2)

where σn = (X1, ...,Xn) and τn = (Y1, ...,Yn).

This assumption quantifies that by replacing the original random subset of hypotheses with an-
other symmetric random subset dependent on the double-sample—and which is therefore invariant
under permutations of this double-sample—the probability of having large deviations of empirical
means evaluated on the sample and ghost sample increases by at most δ and therefore not “too
much”.

Indeed, in all the applications we present δ can be made as small as we require. One extreme
case occurs when for every double-sample (σn,τn),

Fn(σn) ⊆ F sym
2n (σn,τn),
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in which case Assumption 2.1 holds trivially with a constant δ = 0. For example, if both set-valued
maps are the constant function Fn(σn) = F sym

n (σn) = F , then δ = 0.
Given Fn, one can always define a mapping F sym

2n to satisfy Assumption 2.1 as the symmetric
extension of Fn: for every double-sample (σn,τn), F sym

2n (σn,τn) is defined to be the union of all
subsets corresponding to the first half of permutations of the double-sample (σn,τn),

Fsym
2n (σn,τn) :=

⋃

π∈S2n

Fn
(
π(σn,τn)|ni=1

)
, (2.3)

where S2n is the set of permutations on (1, . . . ,2n), and π(σn,τn)|ni=1 is the first half of the permuted
double-sample. However, Assumption 2.1 allows us to replace the original subset Fn(σn) even with
a potentially “smaller” symmetric subset F sym

2n (σn,τn) as long as the change in probabilities can be
controlled.

The importance of Assumption 2.1 lies in the fact that it enables one to bound the probability
(2.1) by proving a similar symmetrization argument to that employed in the original proof of the
uniform Glivenko-Cantelli property.

The following symmetrization theorem is the main result of this section.

Theorem 2.1 If Assumption 2.1 holds then for every t > 0,

(

1− 4
nt2 sup

f∈F
var( f )

)

·PrX

{

∃ f ∈ Fn(σn),
∣
∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣
∣ ≥ t

}

≤ 2PrX×Y Prε

{

∃ f ∈ Fsym
2n (σn,τn),

∣
∣
∣

n

∑
i=1

εi f (Xi)
∣
∣
∣ ≥ nt

4

}

+δ, (2.4)

where σn = (X1, ...,Xn) and τn = (Y1, ...,Yn).

As the examples we present in the next section show, most of the standard methods used in
Learning Theory fall within the general framework of Theorem 2.1. The advantage of Theorem
2.1 is that it reduces the analysis to a geometric problem, namely, estimating the Rademacher sums
associated with the coordinate projection onto σn = (X1, ...,Xn) of the random class F sym

2n (σn,τn),

Fsym
2n (σn,τn)/σn :=

{(
f (X1), ..., f (Xn)

)
: f ∈ Fsym

2n (σn,τn)
}

.

The proof is done in two steps which are the same as in the standard symmetrization procedure:
a symmetrization by a ghost sample which relates the deviation of the mean from the empirical mean
to the deviation of the empirical means evaluated on two different samples; and a symmetrization
by signs which relates the latter deviation to the probability of having “large” Rademacher sums
sup f∈Fsym

2n (σn,τn)
|∑n

i=1 εi f (Xi)|. We present the proof for the sake of completeness.

Lemma 2.2 (Symmetrization by a Ghost Sample) For every t > 0,

(

1− 4n
t2 sup

f∈F
var( f )

)

PrX

{

∃ f ∈ Fn(σn),
∣
∣
∣

n

∑
i=1

(
f (Xi)−Eµ f

)
∣
∣
∣ ≥ t

}

≤PrX×Y

{

∃ f ∈ Fn(σn),
∣
∣
∣

n

∑
i=1

(
f (Xi)− f (Yi)

)
∣
∣
∣ ≥ t

2

}

.

224



ON THE IMPORTANCE OF SMALL COORDINATE PROJECTIONS

Proof. Define the random processes Zi( f ) = f (Xi)−Eµ f and Wi( f ) = f (Yi)−Eµ f , and fix t > 0.
Let σn = (X1, ...,Xn), put β = inf f∈F Pr{|∑n

i=1 Zi( f )| ≤ t/2} and set A = {σn : ∃ f ∈Fn(σn), |∑n
i=1 Zi( f )| ≥

t}. For every element in A there is some f ∈ Fn(σn) and a realization of Zi such that |∑n
i=1 Zi( f )| ≥ t.

Fix this realization and f and observe that by the triangle inequality, if |∑n
i=1Wi( f )| ≤ t/2 then

∣
∣∑n

i=1

(
Zi( f )−Wi( f )

)∣
∣ ≥ t/2. Since (Wi)

n
i=1 is an independent copy of (Zi)

n
i=1,

β ≤ PrY

{∣
∣
∣

n

∑
i=1

Wi( f )
∣
∣
∣ ≤ t

2

}

≤ PrY

{∣
∣
∣

n

∑
i=1

Wi( f )−
n

∑
i=1

Zi( f )
∣
∣
∣ ≥ t

2

}

≤ PrY

{

∃ f ∈ Fn(σn),
∣
∣
∣

n

∑
i=1

Wi( f )−
n

∑
i=1

Zi( f )
∣
∣
∣ ≥ t

2

}

.

Since the two extreme sides of this inequality are independent of the specific selection of f , this
inequality holds on the set A. Integrating with respect to X on A it follows that

βPrX

{

∃ f ∈ Fn(σn),
∣
∣
∣

n

∑
i=1

Zi( f )
∣
∣
∣ ≥ t

}

≤PrX PrY

{

∃ f ∈ Fn(σn),
∣
∣
∣

n

∑
i=1

(
Wi( f )−Zi( f )

)
∣
∣
∣ ≥ t

2

}

.

Finally, to estimate β, note that by Chebyshev’s inequality

Pr
{∣
∣
∣

n

∑
i=1

Zi( f )
∣
∣
∣ ≥ t

2

}

≤ 4n
t2 var( f )

for every f ∈ F , and thus, β ≥ 1− (4n/t2)sup f∈F var( f ).

Proposition 2.3 (Symmetrization by Random Signs) Let F sym
2n be a symmetric map. Then, for any

probability measure µ and every t > 0,

PrX×Y

{

∃ f ∈ F sym
2n (σn,τn),

∣
∣
∣
1
n

n

∑
i=1

(
f (Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

≤ 2PrX×Y Prε

{

∃ f ∈ F sym
2n (σn,τn),

∣
∣
∣

n

∑
i=1

εi f (Xi)
∣
∣
∣ ≥ nt

2

}

,

where σn = (X1, ...,Xn), τn = (Y1, ...,Yn), and (εi)
n
i=1 are independent Rademacher variables.

Proof. By the symmetry of F sym
2n it follows that for every {ε1, ...,εn} ∈ {−1,1}n,

PrX×Y

{

∃ f ∈ F sym
2n (σn,τn),

∣
∣
∣
1
n

n

∑
i=1

(
f (Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

= PrX×Y

{

∃ f ∈ F sym
2n (σn,τn),

∣
∣
∣
1
n

n

∑
i=1

εi
(

f (Xi)− f (Yi)
)
∣
∣
∣ ≥ t

}

.

Taking the expectation with respect to the random signs (that is, with respect to the Rademacher
random variables), the proof follows from the triangle inequality and the fact that (X1, ...,Xn) has
the same distribution as (Y1, ...,Yn).
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Proof of Theorem 2.1. The claim follows immediately by combining Lemma 2.2, Assumption 2.1
and Proposition 2.3.

We can now relate the Rademacher sums from Theorem 2.1 to the Rademacher averages of
Fsym

2n (σn,τn)/σn by employing concentration inequalities for the random variable

Z = sup
f∈Fsym

2n (σn,τn)

∣
∣

n

∑
i=1

εi f (Xi)
∣
∣ = sup

v∈Fsym
2n (σn,τn)/σn

∣
∣

n

∑
i=1

εivi
∣
∣

around its conditional mean Eε(Z|X1, ...,Xn,Y1, ...,Yn).
For example, we state one particular concentration result which follows directly from martingale

methods (see, e.g., McDiarmid, 1989) for functions with bounded differences:

Theorem 2.4 (Concentration) For every set V ⊂ Bn
∞ and every t > 0,

Prε

{

sup
v∈V

∣
∣
∣

n

∑
i=1

εivi

∣
∣
∣−Eε sup

v∈V

∣
∣
∣

n

∑
i=1

εivi

∣
∣
∣ > t

}

≤ e−
t2
2n . (2.5)

Proof. Define h(ε1, . . . ,εn) := supv∈V

∣
∣
∣∑n

i=1 εivi

∣
∣
∣. By the triangle inequality, for every 1 ≤ i ≤ n,

sup
{ε1,...,εn,ε̃i}

|h(ε1, . . . ,εn)−h(ε1, . . . ,εi−1, ε̃i,εi+1, . . . ,εn)| ≤ 2,

and the claim follows directly from McDiarmid’s inequality for h.

In particular, setting V to be the (random) coordinate projection of F sym
2n (σn,τn) onto σn,

V := F sym
2n (σn,τn)/σn =

{(
f (X1), ..., f (Xn)

)
: f ∈ Fsym

2n (σn,τn)
}

and At to be the set of double-samples (σn,τn) with small Rademacher averages for the projections
onto σn,

At :=
{
(σn,τn) : Eε sup

v∈V

∣
∣

n

∑
i=1

εivi
∣
∣ ≤ nt/8

}
,

it follows by the union bound and Equation (2.5) that

PrX×Y Prε

{

∃ f ∈ F sym
2n (σn,τn),

∣
∣
∣

n

∑
i=1

εi f (Xi)
∣
∣
∣ >

nt
4

}

≤ PrX×Y{Ac
t }+ e−

nt2
128 .

Corollary 2.5 If Assumption 2.1 holds, then for every t > 0
(

1− 4
nt2 sup

f∈F
var( f )

)

·PrX

{

∃ f ∈ Fn(σn),
∣
∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣
∣ ≥ t

}

≤ 2
(
PrX×Y{Ac

t }+ e−
nt2
128

)
+δ,

where V := F sym
2n (σn,τn)/σn and At :=

{
(σn,τn) : Eε supv∈V

∣
∣∑n

i=1 εivi
∣
∣ ≤ nt/8

}
.

This corollary illustrates how Assumption 2.1 is sufficient to guarantee a generalization bound
with tails of order e−cnt2

for a learning algorithm drawing its hypotheses from the random set Fn(σn),
as soon as the Rademacher averages of the projection of F sym

2n (σn,τn) onto σn are “small” with high
probability.
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3. Examples

In the previous section we have proved that, under the Assumption 2.1, a small “size” for the set
of random coordinate projections together with a sharp concentration inequality allow us to derive
tail estimates for random subsets Fn. In particular, in order to obtain tail estimates of the order of
e−cnt2

, by Corollary 2.5, it is sufficient to find symmetric random subsets F sym
2n (σn,τn) which satisfy

Assumption 2.1 and for which the probability

PrX×Y

{

Eε

(

sup
f∈Fsym

2n (σn,τn)

|
n

∑
i=1

εi f (Xi)|
∣
∣
∣X1, ...,Xn,Y1, ...,Yn

)

>
nt
8

}

,

is small. Now we are ready to show how apparently different approaches fall within the framework
of Theorem 2.1.

Indeed, we will show that the tail estimate on (1.1) and the generalization bounds in the luckiness
and the algorithmic luckiness frameworks can be derived directly from Corollary 2.5. We will
illustrate this by specifying the corresponding maps Fn and F sym

2n , and showing that for every fixed
double-sample (σn,τn),

Eε sup
f∈Fsym

2n (σn,τn)

∣
∣

n

∑
i=1

εi f (xi)
∣
∣,

are sufficiently small (of the order o(n)).
As we present below, to recover the better estimates for (1.2) as in Mendelson (2002b) is more

delicate because it requires a sharper concentration result than (2.5). We will show that these esti-
mates as well follow from Theorem 2.1, by proving a different concentration inequality which will
enable us to obtain the desired rates of the order of e−cnt .

3.1 Glivenko-Cantelli Classes

In this section we will demonstrate how one can recover the optimal deviation estimates for uniform
Glivenko-Cantelli classes directly from Corollary 2.5.

F is called a uniform Glivenko-Cantelli class (GC class) if for every t > 0

lim
n→∞

sup
µ

Pr
{

sup
f∈F

∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣ ≥ t

}

= 0.

If F is a uniform GC class, by selecting the constant functions

Fn(σn) = F, F sym
n (σn) = F,

Assumption 2.1 is trivially satisfied with δ = 0 and

Fsym
2n (σn,τn)/σn =

{(
f (X1), ..., f (Xn)

)
: f ∈ F

}

for every double-sample (σn,τn). The fact that these coordinate projections are “small” follows
from the characterization of uniform GC classes, an observation we shall return to later.

Theorem 3.1 (Mendelson, 2002a) A class of uniformly bounded functions is a uniform GC class if
and only if

lim
n→∞

sup
{x1,...,xn}⊂Ωn

1
n

Eε sup
f∈F

∣
∣

n

∑
i=1

εi f (xi)
∣
∣ = 0.
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Recall that

Rn(F) = sup
{x1,...,xn}⊂Ωn

Eε sup
f∈F

∣
∣

n

∑
i=1

εi f (xi)
∣
∣

and note that Theorem 3.1 ensures that the bound obtained from Theorem 2.1 is nonempty.
In particular, for every t > 0 let n0 be such that for every n ≥ n0, Rn(F) ≤ nt/8. Since F ⊂

B
(
L∞(Ω)

)
then sup f∈F var( f ) ≤ 1, and thus 1−4sup f∈F var( f )/nt2 ≥ 1/2, provided that n ≥ 8/t2.

Thus, by Corollary 2.5 and selecting N = max{8/t2,n0} it follows that for every integer n > N and
for any probability measure µ,

Pr
{

sup
f∈F

∣
∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣
∣ ≥ t

}

≤ 8e−
nt2
128 .

In cases where one has a priori estimates on the size of the class (e.g., the shattering dimension or
the uniform entropy), one can recover the optimal GC deviation results. For example, if VC(F) = d,
then Rn(F) ≤ C

√
dn where C is an absolute constant, implying that one can take n0 = Cd/t2, and

thus, for every n ≥Ct−2 max{d, log(1/δ)},

Pr
{

sup
f∈F

∣
∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣
∣ ≥ t

}

≤ δ.

Similar estimates can be recovered for classes with a polynomial shattering dimension by applying
the bounds on Rn(F) from Mendelson (2002a).

3.2 Learning Sample Complexity and Error Bounds

The learning sample complexity is governed by the probability that the empirical risk minimization
algorithm fails, that is, it is the probability that an empirical minimizer of the loss functional (or more
generally, an “almost empirical minimizer”) will have a relatively large expectation. Formally, our
aim is to estimate

Pr
{

∃ f ∈ F,
1
n

n

∑
i=1

f (Xi) ≤ t, Eµ f ≥ 2t
}

, (3.1)

where F is the excess squared-loss class.
The required tail estimates follow from two principles: The first is a mild structural assumption

on F , namely that F is star-shaped around 0 (i.e., for every f ∈ F and 0 ≤ t ≤ 1, t f ∈ F); the
second is that there is some B > 0 such that for every f ∈ F , Eµ f 2 ≤ BEµ f . Note that there are
many examples of loss classes for which this second assumption could be verified. For example,
for nonnegative bounded loss functions, the associated loss function classes satisfy this property.
For convex classes of functions bounded by 1, the associated excess squared-loss class satisfies this
property as well, a result that was first shown in Lee, Bartlett, and Williamson (1998) and improved
and extended in Bartlett, Jordan, and McAuliffe (2003) and Mendelson (2002b).

Under these two assumptions, one can show (Mendelson, 2002b) that for every t > 0,

Pr
{

∃ f ∈ F,
1
n

n

∑
i=1

f (Xi) ≤ t, Eµ f ≥ 2t
}

≤ 2Pr
{

sup
f∈F, Eµ f 2≤Bt

∣
∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣
∣ ≥ t

}

. (3.2)
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For the sake of simplicity we present our results for B = 1, which is the case if F consists of
nonnegative functions. The general case follows an identical path.

It is possible to obtain sharper deviation estimates for (3.2)—of the order of e−cnt instead of
e−cnt2

like in the uniform GC case—as long as the largest variance of a class member is of the same
order of magnitude as the required deviation. This follows directly from Talagrand’s inequality (see
Mendelson, 2002b; Bartlett, Bousquet, and Mendelson, 2004), and was the basis for the estimates
on (3.1) in Mendelson (2002b). Unfortunately, the method of proof used in Mendelson (2002b)
cannot be used directly in a way which fits our general principle. We thus present a different proof
which uses the fact that “most” coordinate projections of { f ∈ F : Eµ f 2 ≤ t} are contained in a
“small” Euclidean ball. Although the proof is slightly more complicated than the original one, the
significance of having “small” coordinate projections is better exhibited.

Theorem 3.2 below is the main result of this section.

Theorem 3.2 There are absolute constants K, c and c1 for which the following holds. Let F ⊂
B
(
L∞(Ω)

)
be star-shaped around 0 such that for every f ∈ F, Eµ f 2 ≤ Eµ f . If t ≥ c1/n satisfies that

E sup
f∈F, Eµ f 2≤t

∣
∣
∣

n

∑
i=1

εi f (Xi)
∣
∣
∣ ≤ nt

16
, (3.3)

then

Pr
{

∃ f ∈ F,
1
n

n

∑
i=1

f (Xi) ≤ t, Eµ f ≥ 2t
}

≤ Ke−cnt .

For example, if t0 is the minimal t which satisfies (3.3), F is a loss class in a proper learning scenario,
and f ∗ denotes the loss function associated with the empirical minimizer, then with probability
larger than 1−Ke−cnt0 ,

Eµ f ∗ ≤ 2t0.

Note that it is possible to estimate t0, either via a priori assumptions on the function class, such
as assumptions on the shattering dimension or the uniform entropy as in Mendelson (2002b), or
from the sampled data as in Bartlett, Bousquet, and Mendelson (2004). For example, one can show
(Mendelson, 2002b; Bartlett, Bousquet, and Mendelson, 2004) that if F is the star-shaped hull of
a Boolean class G and 0, and if VC(G) = d, then t0 = O

(
d
n log

(
en
d

))
. Hence, there are absolute

constants c and C such that with probability larger that 1− c(d/n)d ,

Eµ f ∗ ≤C
d
n

log
(en

d

)

.

The rest of this section will be devoted to the proof of Theorem 3.2.
First, let us denote the subset of functions in F with variance bounded by t by

F t := { f ∈ F, Eµ f 2 ≤ t}.

From (3.2) it follows that by setting Fn = Fsym
2n := F t , and applying Theorem 2.1 (Assumption

2.1 holds trivially with δ = 0), the probability we want to estimate is bounded by the probability

PrX×Y Prε

{

∃ f ∈ F t ,
∣
∣
∣∑n

i=1 εi f (Xi)
∣
∣
∣ ≥ nt

4

}

.

We will show that the condition (3.3) is just a way of ensuring that, with high probability, the co-
ordinate projections of F t onto a random sample are small. This, together with a sharp concentration
result will yield the desired result.
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Let

Zt(X1, ...,Xn) := Eε sup
f∈F t

∣
∣

n

∑
i=1

εi f (Xi)
∣
∣.

The first step in the proof is based on an inequality due to Boucheron, Lugosi, and Massart which
will allow us to bound the probability that Zt deviates from its expectation.

Theorem 3.3 (Boucheron, Lugosi, and Massart, 2003) Let V1, ...,Vn be independent, identically
distributed random variables which take values in a Banach space B, and assume that ‖Vi‖ ≤ 1
almost surely. Set

Z := E
(
‖

n

∑
i=1

εiVi‖
∣
∣ V1, ...,Vn

)
.

Then, for any t > 0,

Pr
(
Z ≥ EZ + t

)
≤ e−

t2
2EZ+2t/3 .

To apply this theorem to Z = Zt , let B = `∞(F), which is the set of all bounded functions
z : F → R such that ‖z‖`∞(F) = sup f∈F |z( f )|. Let Vi := Xi and define Xi( f ) := f (Xi). Hence,
‖Xi‖B ≤ 1 and ‖∑n

i=1 εiVi‖B = sup f∈F |∑n
i=1 εi f (Xi)|.

If t is such that EZt ≤ nt/16 then by Theorem 3.3,

PrX

{

Eε sup
f∈F t

∣
∣
∣

n

∑
i=1

εi f (Xi)
∣
∣
∣ >

nt
8

}

≤ e−cnt , (3.4)

where c is an absolute constant. Hence, with F sym
2n (σn,τn) = F t and

At = {(σn,τn) : Eε sup
f∈F t

|
n

∑
i=1

εi f (Xi)| ≤ nt/8},

where σn = (X1, ...,Xn) and τn = (Y1, ...,Yn) as before, it follows that

PrX×Y{Ac
t } ≤ e−cnt .

For a fixed (σn,τn) ∈ A, we require a sharp concentration result for

Wt(ε1, ...,εn) := sup
f∈F t

|
n

∑
i=1

εi f (Xi)|,

since (2.5) leads only to a tail estimate of e−cnt2
. To that end, we use Talagrand’s convex-distance

inequality (Talagrand, 1995) (let us mention that our estimates also follow from an earlier result due
to Johnson and Schechtman 1991). We will formulate the concentration result only in the context
we require (see Ledoux, 2001, pg. 76).

Theorem 3.4 Let T ⊂ `n
2 and set σ := supt∈T ‖t‖`n

2
. Define the random variable G := supt∈T |∑n

i=1 εiti|,
and denote its median by MG. Then for every r > 0,

Pr
{
|G−MG| > r

}
≤ 4e−r2/4σ2

,

and |EG−MG| ≤ 4πσ.
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In our case, T is the image of F under the coordinate projection onto the random sample
σn = (X1, ...,Xn) where (σn,τn) ∈ A. In order to bound σ we shall estimate the probability that
a coordinate projection has a small diameter in `n

2.

Theorem 3.5 Let F be a class of functions which map Ω into [−1,1]. For every x > 0 and r which
satisfies that

E sup
f∈F, Eµ f 2≤r

∣
∣

n

∑
i=1

εi f (Xi)
∣
∣ ≤ nr

20
− 11x

20
,

then with probability at least 1−2e−x,

{

f ∈ F : Eµ f 2 ≤ r
}

⊂
{

f ∈ F :
n

∑
i=1

f 2(Xi) ≤ 2rn
}

.

Proof. The proof follows directly from the contraction inequality (see, e.g., Theorem 2.8 in Bartlett,
Bousquet, and Mendelson, 2004) for φ(x) = x2 combined with Corollary 2.7 in Bartlett, Bousquet,
and Mendelson (2004).

By our selection of t, it is easy to see that there is an absolute constant c, such that if x = cnt,
then with probability larger that 1−2e−cnt , the radius of the projected set F t/σn ⊂ `n

2 is smaller than√
2nt. In particular, we have

Corollary 3.6 There are absolute constants c and c1 for which the following holds. For every
t ≥ c1/n such that EZt ≤ nt/16, there is a set A′

t of samples (σn,τn) which has probability larger than
1−3e−cnt , on which the set V =

{(
f (X1), ..., f (Xn)

)
: f ∈ F t

}
is such that Eε supv∈V |∑n

i=1 εivi| ≤
nt/8 and supv∈V ‖v‖`n

2
≤
√

2nt.

Combining this corollary with Theorem 3.4, for every such set V ,

Prε

{

sup
v∈V

∣
∣
∣

n

∑
i=1

εivi

∣
∣
∣ ≥ nt

4

}

≤ Prε

{

sup
v∈V

∣
∣
∣

n

∑
i=1

εivi

∣
∣
∣ ≥ Eε sup

v∈V

∣
∣

n

∑
i=1

εivi
∣
∣+

nt
8

}

≤ 4e−cnt

for an absolute constant c. Hence, there are absolute constants c and K such that

PrX×Y Prε

{

∃ f ∈ F t ,
∣
∣
∣

n

∑
i=1

εi f (Xi)
∣
∣
∣ ≥ nt

4

}

≤ Ke−cnt . (3.5)

Proof of Theorem 3.2. For every t > 0 let Fn = Fsym
2n := F t , and thus Assumption 2.1 holds with

δ = 0. Since for every f ∈ F t , Eµ f 2 ≤ t, then

(
1− 4

nt2 sup
f∈F t

var( f )
)
≥ 1

2

provided that t ≥ 8/n. Now the assertion follows from (3.2), Theorem 2.1, and (3.5).
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3.3 Luckiness

In the luckiness framework introduced in Shawe-Taylor et al. (1998), bounds on the generalization
error of functions are formulated a posteriori, after having seen a sample σn. The bounds are given
in terms of an upper bound on some empirical, computable quantity dependent on the sample.

In the following, let n be a fixed sample size, d is a given fixed integer, and set δ ∈ (0,1]. Three
concepts are used in the luckiness framework. The first is the luckiness function L : F×∪k Ωk −→R

which is invariant under permutations of the sample, that is, it depends only on the set {x1, ...,xk}.
Using the luckiness function one can construct sample dependent subsets of F , called lucky sets

in the following manner; for every sample ζ and f ∈ F , the lucky set consists of all the functions
luckier on this sample than the given function, that is,

H( f ,ζ) :=
{

g ∈ F : L(g,ζ) ≥ L( f ,ζ)
}
.

Observe that the luckiness function imposes a structure of increasing subsets of F , because H(g,ζ)⊆
H( f ,ζ) if and only if L(g,ζ) ≥ L( f ,ζ), a fact which will allow us to define F sym

2n (σn,τn).

Lemma 3.7 For every integer d and sample ζ there is a unique set Hd(ζ) with the following prop-
erties:

1. M
(

1
n ,Hd(ζ),L1(µn)

)
≤ 2d , where µn is the empirical measure supported on ζ.

2. If f ∈ F satisfies that M
(

1
n ,H( f ,ζ),L1(µn)

)
≤ 2d then f ∈ Hd(ζ).

Proof. Let A := { f ∈ F : M
(

1
n ,H( f ,ζ),L1(µn)

)
≤ 2d} and set Hd(ζ) :=

⋃

f∈A
H( f ,ζ). To see that

Hd(ζ) has the required properties, note that if K ⊂ Hd(ζ) is a finite 1/n-separated set with respect
to L1(µn), then there is some f ∈ A such that K ⊂ H( f ,ζ), implying that |K| ≤ 2d . The second
property and the uniqueness are easily verified.

For every double-sample ζ = (σn,τn) we set

Fsym
2n (σn,τn) := Hd(σn,τn), (3.6)

and observe that this random class is permutation invariant, implying that F sym
2n is symmetric.

The second ingredient in the luckiness framework, the ω-function, ω : R×N× (0,1] → N, is
used to define Fn(σn). Given a luckiness function L and an ω-function, then for a fixed integer d
and δ ∈ (0,1], define

Fn(σn) :=
{

f ∈ F : ω
(
L( f ,σn),n,δ

)
≤ 2d}. (3.7)

The third ingredient is the ω-smallness condition, which is a joint property of the luckiness and
ω functions. It states that for every n ∈ N, every δ ∈ (0,1] and every probability measure µ

PrX×Y

{

∃ f ∈ F : M
(

1
n ,H( f ,(σn,τn)),L1(µ2n)

)
> ω

(
L( f ,σn),n,δ

)}

< δ. (3.8)

Examples for luckiness functions are the empirical VC-dimension of a binary function class with
respect to a sample—in this case all lucky sets are equal to the whole set F—and the margin of linear
classifiers. Their corresponding ω functions can be found in Shawe-Taylor et al. (1998). Although
the luckiness framework gives a unified proof for existing generalization bounds, finding a pair of
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luckiness and ω-functions seems to be difficult, because of the quite technical and counterintuitive
ω-smallness condition.

The following result shows that the ω-smallness of L ensures that Assumption 2.1 holds, and
that, with high probability, F sym

2n (σn,τn)/σn is sufficiently small. Therefore, it is just a way of
requiring that F sym

2n (σn,τn) has, with high probability, small random coordinate projections.

Lemma 3.8 For fixed integers n and d, and δ ∈ (0,1], let Fn and F sym
2n be defined as in (3.7) and

(3.6). If a luckiness function L and an ω-function satisfy the ω-smallness condition (3.8), then for
every t > 0,

PrX×Y

{

∃ f ∈ Fn(σn),
∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

≤ PrX×Y

{

∃ f ∈ F sym
2n (σn,τn),

∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

+δ.

Proof. For a fixed double sample ζ = (σn,τn) let µ2n be the empirical measure supported on ζ. Put

Aζ :=
{

f ∈ F : M
(

1
2n ,H( f ,(σn,τn)),L1(µ2n)

)
≤ ω

(
L( f ,σn),n,δ

)}

and
Bζ :=

{

f ∈ F : M
(

1
2n ,H( f ,(σn,τn)),L1(µ2n)

)
≤ 2d

}

.

Note that Fn(σn)∩Aζ ⊆ Bζ ⊆ F sym
2n (σn,τn). By the ω-smallness condition,

PrX×Y{∃ f ∈ (Aζ)
c} ≤ δ,

and by the union bound for disjoint sets,

PrX×Y

{

∃ f ∈ Fn(σn),
∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

= PrX×Y

{

∃ f ∈ Fn(σn)∩Aζ,
∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

+PrX×Y

{

∃ f ∈ Fn(σn)∩ (Aζ)
c,

∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

, (3.9)

and our claim follows.

Now, we are ready to formulate the generalization bound for the luckiness framework.

Theorem 3.9 Let L and ω be functions satisfying the ω-smallness condition (3.8). Then, for every
probability measure µ, every d ∈ N and every δ ∈ (0,1], there is a set of probability larger than
1−12δ such that if ω

(
L( f ,σn),n,δ

)
≤ 2d , then

∣
∣
∣Eµ f − 1

n

n

∑
i=1

f (Xi)
∣
∣
∣ ≤C

√

d
n

log
1
δ
,

where C is an absolute constant.

233



MENDELSON AND PHILIPS

Proof. Let Fn and F sym
2n be defined as above, and observe that

M
(

1
n ,Fsym

2n (σn,τn),L1(µ2n)
)
≤ 2d (3.10)

for every (σn,τn). By Corollary 2.5 we have to estimate

PrX×Y

{

Eε sup
f∈Fsym

2n (σn,τn)

∣
∣
∣

n

∑
i=1

εi f (Xi)
∣
∣
∣ >

nt
8

}

,

where σn = (X1, ...,Xn) and τn = (Y1, ...,Yn). Let

V :=
{(

f (X1), ..., f (Xn)
)

: f ∈ Fsym
2n (σn,τn)

}

⊂ `n
2,

put µ2n to be the empirical measure supported on ζ = (σn,τn) and set νn to be the empirical measure
supported on σn. Note that for every f ,g, Eµ2n | f − g| ≥ Eνn | f − g|/2. Thus, every 1/n-cover of
Fsym

2n (σn,τn) in L1(µ2n) is a 2/n-cover of the same set in L1(νn). In particular, if A is a maximal
1/n-packing of F sym

2n (σn,τn) in L1(µ2n), it is a 2/n cover of that set in L1(νn). It is easy to verify that
B
(
L1(νn)

)
= nBn

1, and in particular, V ⊂A+ 2
n ·nBn

1 = A+2Bn
1, where A+B = {a+b : a∈A, b∈B}.

By the triangle inequality,

Eε sup
f∈Fsym

2n (σn,τn)

∣
∣
∣

n

∑
i=1

εi f (xi)
∣
∣
∣ = Eε sup

v∈V

∣
∣
∣

n

∑
i=1

εivi

∣
∣
∣ = Eε sup

a∈A,b∈Bn
1

∣
∣
∣

n

∑
i=1

εi(ai +2bi)
∣
∣
∣

≤ Eε sup
a∈A

∣
∣
∣

n

∑
i=1

εiai

∣
∣
∣+2Eε sup

b∈Bn
1

∣
∣
∣

n

∑
i=1

εibi

∣
∣
∣.

The first term can be bounded by a corollary of Slepian’s inequality (Pisier, 1989), which states
that there is an absolute constant C such that for every A ⊂ `n

2,

Eg sup
a∈A

∣
∣
∣

n

∑
i=1

giai

∣
∣
∣ ≤C

√

log |A| sup
u,v∈A

‖u− v‖2,

where (gi)
n
i=1 are independent standard gaussian random variables.

Since our class consists of functions bounded by 1, then V ⊂Bn
∞ ⊂√

nBn
2 and since the Rademacher

averages are upper bounded (up to an absolute constant) by the gaussian ones (Milman and Schecht-
man, 2001), then

Eε sup
a∈A

∣
∣
∣

n

∑
i=1

εiai

∣
∣
∣ ≤CEg sup

a∈A

∣
∣
∣

n

∑
i=1

giai

∣
∣
∣ ≤C

√

log |A|
√

n ≤C
√

nd,

where the final inequality holds because |A| ≤ 2d by (3.10).
In order to estimate the second term, one can apply the triangle inequality to show that

Eε sup
b∈Bn

1

∣
∣
∣

n

∑
i=1

εibi

∣
∣
∣ ≤ 1.

In conclusion

Eε sup
f∈Fsym

2n (σn,τn)

∣
∣
∣

n

∑
i=1

εi f (xi)
∣
∣
∣ ≤C

√
nd.

To complete the proof, apply Corollary 2.5 for t = C
√

d
n log(1/δ).
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3.4 Algorithmic Luckiness

In the algorithmic luckiness framework (Herbrich and Williamson, 2002), the generalization error
bound is also formulated a posteriori, after having seen a sample. It differs from the luckiness
framework because it gives bounds on the generalization error of the function learned by the learning
algorithm from the sample at hand. Again, the bound is given in terms of a computable quantity
dependent on the sample and on the algorithm.

In a similar fashion to the luckiness framework, an algorithmic luckiness function and an ω-
function are introduced in order to define the functions Fn and F sym

2n . The functions L and ω satisfy
a joint smallness condition which ensures that Assumption 2.1 holds, and that the size of the pro-
jection F sym

2n (σn,τn)/σn is sufficiently small.
As we did before, fix a sample size n, an integer d and some δ ∈ (0,1]. Denote by A a fixed

learning algorithm, by A(ζ) the loss function associated with the hypothesis produced by the algo-
rithm from the sample ζ, and set A(F) = { f = A(ζ) : ζ ∈ Ωn}.

The algorithmic luckiness function is a function L : A(F) −→ R. For a sample ζ of size 2n, the
lucky set G(ζ) is defined as the subset of losses of functions learned by the algorithm on the first half
of the sample, when permuting the whole sample, as long as the function the algorithm produced
on the first half of the permuted sample is “luckier” than on the original one. Formally, let S2n be
the set of permutations on {1, ...,2n}, and for every ζ = (ζ1, ...,ζ2n), set ζ|ni=1 = (ζ1, ...,ζn). Define
the lucky set as

G(ζ) :=
{

A
(
π(ζ)|ni=1

)
: L

(
A(π(ζ)|ni=1)

)
≥ L

(
A(ζ|ni=1)

)
, π ∈ S2n

}

.

If GA(ζ) is the subset of losses corresponding to functions learned by A on the first half of all
the permutations of the double-sample ζ, then G(ζ) ⊂ GA(ζ), and clearly, |GA(ζ)| ≤ (2n)! < ∞.
Therefore, we can order the functions in decreasing order according to their luckiness. Define the
ordered set

GA(ζ) :=
[

f1, f2, f3, . . . , fk−1, fk
︸ ︷︷ ︸

G(ζ)

, fk+1, . . . , fm

]

,

and for the sake of simplicity, assume that for every i < j, L( fi) > L( f j). Only a small modification
is required in the general case, where some functions might have the same luckiness.

Set fk = A(ζ|ni=1) and let G`
A(ζ) be the subset consisting of the first ` functions in GA(ζ), that

is, G`
A(ζ) = { f1, f2, f3, . . . , f`}.

For the given integer d and the double-sample (σn,τn) put k∗ to be the largest integer such that

M
(

1
n ,Gk∗

A ((σn,τn)),L1(µ2n)
)
≤ 2d and M

(
1
n ,Gk∗+1

A ((σn,τn)),L1(µ2n)
)

> 2d .

Then, by setting
Fsym

2n (σn,τn) := Gk∗
A ((σn,τn)) (3.11)

it follows that F sym
2n is symmetric, since the learning algorithm is permutation invariant.

The ω-function, ω : R×N× (0,1] −→ N is used to define Fn(σn). Indeed, define

Fn(σn) :=

{

{A(σn)} if ω
(
L(A(σn)),n,δ

)
≤ 2d

/0 otherwise,
(3.12)
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and note that |Fn(σn)| ≤ 1.
Finally, the ω-smallness condition states that for every integer n, every δ ∈ (0,1], and every

probability measure µ,

PX×Y

{

M
(

1
n ,G((σn,τn)),L1(µ2n)

)
≥ ω

(
L(A(σn)),n,δ

)}

< δ, (3.13)

and as we show, it assures that Assumption 2.1 holds.

Lemma 3.10 Let A be a learning algorithm, fix an integer d and some δ ∈ (0,1], and let Fn and
Fsym

2n be as in (3.12) and (3.11). If a luckiness function and ω-function satisfy the ω-smallness
condition (3.13), then for every t > 0

PrX×Y

{

∃ f ∈ Fn(σn) :
∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

≤ PrX×Y

{

∃ f ∈ F sym
2n (σn,τn) :

∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

+δ.

Proof. For every double sample ζ = (σn,τn), let µ2n be the empirical measure supported on (σn,τn)
and define two random sets in the following manner. Let Aζ := {A(σn)} if M

(
1
n ,G((σn,τn)),L1(µ2n)

)
<

ω
(
L(A(σn)),n,δ

)
and the empty set otherwise, and put Bζ := {A(σn)} if M

(
1
n ,G((σn,τn)),L1(µ2n)

)
≤

2d and the empty set otherwise. Note that for every ζ, Fn(σn)∩Aζ ⊂ Bζ ⊂ Fsym
2n (σn,τn). Moreover,

if Fn(σn)∩ (Aζ)
c 6= /0, then Fn(σn) = {A(σn)} and Aζ = /0. Thus, by the ω-smallness condition,

PrX×Y

{

Fn(σn)∩ (Aζ)
c 6= /0

}

≤ PrX×Y

{

Aζ = /0
}

< δ.

Finally, for every t > 0,

PX×Y

{

∃ f ∈ Fn(σn),
∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

= PrX×Y

{

∃ f ∈ Fn(σn)∩Aζ,
∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

+PrX×Y

{

∃ f ∈ Fn(σn)∩
(
Aζ

)c
,
∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

≤ PrX×Y

{

∃ f ∈ F sym
2n (σn,τn),

∣
∣
∣
1
n

n

∑
i=1

( f
(
Xi)− f (Yi)

)
∣
∣
∣ ≥ t

}

+δ,

as claimed.

The definition of F sym
2n (σn,τn) assures that the covering numbers of F sym

2n (σn,τn) are small, and
by Corollary 2.5 we obtain a result analogous to Theorem 3.9, which recovers the main result of
Herbrich and Williamson (2002).

Theorem 3.11 Let A be a learning algorithm which takes values in B
(
L∞(Ω)

)
, and let L and

ω be functions satisfying the ω-smallness condition (3.13). Then, for every probability measure
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µ, every d ∈ N and every δ ∈ (0,1], there is a set of probability at least 1 − 12δ such that if
ω

(
L(A(σn)),n,δ

)
≤ 2d , then

∣
∣
∣Eµ

(
A(σn)

)
−Eµn

(
A(σn)

)
∣
∣
∣ ≤C

√

d
n

log
1
δ
,

where C is an absolute constant.
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