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Abstract

In formal languages, a Picture language is a set of pictures,
where a picture is a two-dimensional arrangement of symbols
over an alphabet. Many families of picture languages namely
rectangular, hexagonal and iso-picture languages were intro-
duced in the literatre. Initially the study of picture languages
was motivated by pattern recognition and image processing.
We have introduced tetrahedral picture languages and stud-
ied its recognizability using tetrahedral tiles. Various inter-
esting patterns are generated using 3D-array token Petri nets
generating tetrahedral picture languages. In this paper, we
give a survey of tetrahedral picture languages and we propose
domino recognizability of tetrahedral picture languages.

Introduction
In formal language theory, two dimensional picture lan-
guages plays a vital role in Pattern recognition and image
processing. Many recognizing devices such as grammars,
automata, pasting systems and Petri nets have been used
in the literature (Siromoney, Siromoney, and Krithivasan
1972, 1973). Recognizability of two-dimensional picture
languages have been introduced by Gimmarresi and Restivo
(Giammarresi and Restivo 1992). M. Latteux and Simplot
have introduced hv-local picture languages in which hori-
zontal and vertical dominoes were used (Latteux and Sim-
plot 1997). K.S. Dersanambika et al. (Dersanambika et al.
2005) introduced the recognizability of hexagonal picture
languages. T. Kalyani et al. (Kalyani, Dare, and Thomas
2004) have introduced the recognizability of iso picture lan-
guages.

Extending these ideas to three dimensions D.G. Thomas
et al. (Thomas et al. 2008) have introduced the recogniz-
ability of three dimensional rectangular picture languages.
Motivated by these studies in the literature F. Sweety et
al. (Sweety et al. 2019) have introduced the recognizabilty
of tetrahedral picture languages. T. Kalyani et al. (Kalyani
et al. 2020) have generated tetrahedral picture languages us-
ing Petri nets. Some interesting 3D-patterns were generated
using this system. Tetrahedral picture languages can be used
to generate some interesting floor and wall designs.

In this paper we give a study on tetrahedral picture lan-
guages and its recognizability is studied using domino sys-
tem.

Recognizable Tetrahedral Picture Languages
In this section, we recall the notion of a tetrahedral tile, tetra-
hedral picture languages, local and recognizable tetrahedral
picture languages (Dharani, Maragatham, and Siromoney
2017; Sweety et al. 2019).

Definition 1. (Sweety et al. 2019) A Parallel Space Filling
Grammar (PSFG) is a 5-tuple (S, S0,Σ, P, C) where S is
the set of three dimensional polyhedral. S0 ∈ S is the initial
polyhedron. Σ is the set of alphabets representing vertices
v, edge positions ep, face positions fp or any combination
of these in a three dimensional polyhedron. The production
rules of P are of the following types

(i)v → v (ii)ep → ep (iii)fp → fp
(iv)v → ep (v)fp → ep (vi)v → fp
(vii)ep → v (viii)ep → fp (ix)fp → v.

C is the control language over P . The family of all possible
3D pictures generated by PSFG is denoted by L∗-PSFG. The
subset of L∗-PSFG is called picture language L-PSFG.

Definition 2. (Sweety et al. 2019) A tetrahedral tile is a
polyhedral which has four vertices, four faces and six edges.
Each face is an equilateral triangle. f4 is the base of the
tetrahedron. The directions along the vertices v1, v2 and v3
are denoted by D1, D2 and D3 respectively.

Figure 1: A tetrahedron



Definition 3. A tetrahedral picture is a picture generated by
PSFG where S is the set of regular tetrahedron. S∗∗T is the
set of all tetrahedral pictures over the set S. A tetrahedral
picture language over S is a subset of S∗∗T .

Definition 4. Let S be a finite set of regular tetrahedral tiles.
A tetrahedral picture language over (v → ep) L ⊆ S∗∗T

is called local if there exists a finite set ∆ of tetrahedral
pictures of size 2 over the set of tiles

such that L = {p ∈ S∗∗T /B2(p̂) ⊆ ∆}. B2(p̂) denotes
the set of all sub pictures of p̂ of size 2. The family of local
tetrahedral picture languages will be denoted by TrLoc(v →
ep).

Definition 5. A tetrahedral tiling system T is a 6-tuple
(S, S′,Σ,Γ, π, θ) where S and S′ are finite sets of tetrahe-
dral tiles and Σ and Γ are two finite sets of symbols repre-
senting vertices v, edge positions ep, and face positions fp
are any combinations of these. π : Γ → Σ is a projection
and θ is a set of tetrahedral pictures of size 2 over the al-
phabet Γ ∪ {#}.

Definition 6. The tetrahedral picture language L ⊆ S∗∗T is
tiling recognizable if there exists a tetrahedral tiling system
T = (S, S′,Σ,Γ, π, θ) such that L = π(L′(θ)). TrREC is
exactly the family of tetrahedral picture languages recogniz-
able by tetrahedral tiling systems (TrTS).

Theorem 1. The family TrREC is closed under projection.

Theorem 2. The family TrREC is closed under right and left
catenations with the production rules v → ep and ep → v.

Petri Nets Generating Tetrahedral Picture
Languages

In this section, we recall the notion of a Petri net struc-
ture generating tetrahedral picture languages (Kalyani et al.
2020).

Definition 7. A 3D Tetrahedral Tile Array Token Petri Net
(3D-TetATPN) is a six tuple N = (Σ, C, µ, S, σ, F ) where
Σ is an alphabet of tetrahedral tiles or extended tetrahedral
tiles (3D-picture made up of tetrahedral tiles), C is a Petri
Net structure, µ is an initial marking of 3D-pictures made
up of tetrahedral tiles or extended tetrahedral tiles kept in
some places of the net, S is a set of catenation rules, σ is a
partial mapping which attaches rules to the various transi-
tions of the Petri Net of the form σ(ti) = P Q, F is a
subset of the set of places of the Petri Net where the final 3D-
tetrahedral picture is stored after all the firing of the various
possible transitions of the Petri Net.

Definition 8. The language generated by 3D-TetATPN is the
set of all 3D-tetrahedral pictures stored in the final places of
the Petri Net structure and is denoted by L(N).

Example 1. Consider the 3D-TetATPN N2 =
(Σ, C, µ, S, σ, F ) where,
Σ = {H,A,B,C,D}, C = (P, T, I, O), P =

{P1, P2, P3, . . . P8},
T = {t1, t2, t3, . . . t7}.
The initial marking µ is the hexagonal polyhedral H in the
place of P1.

σ the mapping from the set of transitions to the set of rules
is shown in Fig. 2 and F = {P8}

Figure 2: 3D-Array token Petri Net generating increasing
sequence of hexagonal polyhedrals

Starting with H on firing the sequence t1t2t3t4 the tetra-
hedral tiles B, A, D and C are catenated to H according to
the catenation rules respectively and the resultant 3D-array
is sent out to place P5. On firing the sequence t5t6 Hexago-
nal polyhedrals are catenated to C-tetrahedral tile in paral-
lel in the right up and right down directions and then firing
t7 hexagonal polyhedrals are catenated to hexagonal poly-
hedrals in the right down direction in parallel and finally the
resultant sequence of hexagonal polyhedral language is sent
to the final place P8.

The first member of the language generated is shown in
Fig. 3. In the first member two hexagonal polyhedrals are
catenated twice. In the nth member n + 1 hexagonal poly-
hedrals are catenated twice.

Figure 3: First member of the language generated by N2

Theorem 3. L(3D − TetATPN)−RTAL ̸= ∅.

Proof. We consider a tetrahedral language whose boundary
is an equilateral triangle. This language cannot be generated
by any Regular Tetrahedral Array Grammar (RTAG) (Ra-
man, Kalyani, and Thomas 2020). Since the rules in RTAG
are of the following forms:



Similar rules can be given for the other two tetrahedral tiles
C and D, where A and B are non terminal symbols and a
and b are terminal symbols. Starting with a tetrahedral tile
A, RTAG can generate at most three connected tiles. So it

cannot generate an equilateral triangle of the form
but this language can be generated by the following 3D-
TetATPN.

Consider a 3D-TetATPN N4 =
(Σ, C, µ, S, σ, F ), where Σ = {A,B},
C = (P, T, I, O) where P = {P1, P2, P3, P4},
T = {t1, t2, t3}. The initial marking µ is the tetrahe-
dral tile A in place P1.

σ the mapping from the set of transitions to the set of rules
is shown in Fig. 4, F = {P4} and the language generated by
N4 is shown in Fig. 5.

Figure 4: 3D-TetATPN of the language of equilateral trian-
gle tetrahedral

Figure 5: language of equilateral triangle tetrahedral

Theorem 4. L(3DTetATPN) and BPTAL are incompa-
rable but not disjoint.

Proof. Consider a tetrahedral language whose boundary is
an equilateral triangle of size 2. This language is generated

by both systems Basic Puzzle Tetrahedral Array Grammar
(BPTAG) (?) as well as by 3D-TetATPN.

Consider a BPTAG,
where P con-

sists of the following rules:

The language generated by G is an equilateral triangle
tetrahedral of size 2 which is shown in Fig. 6.

Figure 6: Equilateral triangle tetrahedral picture of size 2

This language can be generated by the following 3D-
TetATPN:

Consider a 3DTetATPN N5 = (Σ, C, µ, S, σ, F ),
where Σ = {A,B}, C = (P, T, I,O) where P =
{P1, P2, P3, P4}, T = {t1, t2, t3}. The initial marking µ is
the tetrahedral tile A in place P1.

, σ the mapping
from the set of transitions to the set of rules is shown in Fig.
7 and F = {P4}

Figure 7: 3D-TetATPN generating equilateral triangle tetra-
hedral of size 2

Equilateral triangle tetrahedral of size more than 2 cannot
be generated by BPTAG, whereas it can be generated by 3D-
TetATPN (as in Theorem 3). On the other hand the sequence
of over lapping equilateral triangle tetrahedral can be gener-
ated by the above BPTAG, whereas it cannot be generated
by any 3D-TetATPN as the catenation rules are applied in
parallel wherever possible.

Domino Recognizable Tetrahedral Picture
Languages

In this section, we define vertical, right and left dominoes of
the types shown in Fig. 8.



Figure 8: Vertical, right and left dominoes of size (2, 1)

We have defined local tetrahedral picture languages as
languages given by a finite set of authorized tetrahedral pic-
tures of size 2. Here, vertical, right and left controls are done
at the same time. In domino system the three controls are
done separately.

Given a tetrahedral picture p of size n, we denote by
Bh,k(p), the set of all sub pictures of p of size (h, k), i.e.,
h tetrahedral pictures of size k, 1 ≤ h, k ≤ n are generated
by the production rule v → ep.

Definition 9. A three dimensional tetrahedral picture lan-
guage L ⊆ S∗∗T is vrl-local if there exists a finite set ∆
of dominoes over the alphabet Σ ∪ {#} such that the lan-
guage L = {p ∈ S∗∗T /B2,1(p̂) ⊆ ∆}. The family of
vrl-local tetrahedral picture languages is denoted by vrl-
Loc(v → ep).

The family of vrl-local tetrahedral picture languages over
(v → ep) is strictly included in local tetrahedral picture
languages over (v → ep).

Definition 10. A Tetrahedral Domino System (TDS) is a 4-
tuple TD = (Σ,Γ,∆, π), where Σ and Γ are two finite al-
phabets of tetrahedral tiles, ∆ is a finite set of vertical, right
and left dominoes over the alphabet Γ∪{#} and π : Γ → Σ
is a projection.

The tetrahedral domino system recognizes a tetrahedral
picture language L over the alphabet Σ and is defined as
L = π(L′), where L′ = L(∆) is the vrl-local tetrahedral
picture language over (v → ep) of Γ. The family of tetrahe-
dral picture languages recognizable by tetrahedral domino
system is denoted by L(TDS).

Proposition 1. If L ⊆ S∗∗T is vrl-local tetrahedral picture
language over (v → ep) then L is local tetrahedral picture
language over (v → ep). That is L(TDS) ⊆ TrLoc(v →
ep).

Proof. Let L ⊆ S∗∗T be a vrl-local tetrahedral picture lan-
guage over (v → ep). Then L = L(∆) where ∆ is a finite
set of vertical, right and left dominoes of size (2, 1). We will
construct a finite set of tetrahedral pictures θ of size 2 and
show that L = L(θ). The set of tiles θ will be defined in a
way that all sub-pictures of size (2, 1) of each tile in θ should
belong to the set of dominoes ∆. We define θ as follows.

θ =

{
θ ∈ (Σ∪{#})2

/
θ ̸= , B(2,1)(θ) ⊆ ∆

}

Let L′ = L(θ). We now show that L′ = L. Let p ∈ L′.
Then by definition B2(p̂) ∈ θ. This implies that B2,1(p̂) ⊆
B2,1(B2(p̂)) ⊆ B2,1(θ) ⊆ ∆. Hence p ∈ L.

Conversely, let p ∈ L and q ∈ B2(p̂). Then B2,1(q) ⊆
B2(p̂) ⊆ ∆. Therefore q ∈ θ and p ∈ L′. Hence L =
L′.

Lemma 1. Let L be a local tetrahedral picture language
over an alphabet Σ. Then there exists a vrl-Loc tetrahedral
picture language L′ over an alphabet Γ and a mapping π :
Γ → Σ such that L = π(L′).
Theorem 5. L(TrTS) = L(TDS).

Proof. The inclusion L(TDS) ⊆ L(TrTS) is an imme-
diate consequence of Proposition 1. The inverse inclusion
follows from Lemma 1.

Conclusion
In this paper we have defined domino recognizability of
tetrahedral picture languages over the production rule (v →
ep). It is compared with local and recognizable tetrahe-
dral picture languages. We have proposed CTTv → ep &
ep → vTPS and TetTv → ep & ep → vPPS and these
two systems are compared with local tetrahedral picture lan-
guages. This work can also be applied to other production
rules of PSFG. Wang recognizability of tetrahedral picture
languages can be studied. This is our future work.
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