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Abstract

We find ourselves surrounded by a rapidly increasing number
of autonomous and semi-autonomous systems. Two grand
challenges arise from this development: Machine Ethics and
Machine Explainability. Machine Ethics, on the one hand, is
concerned with behavioral constraints for systems, set up in
a formal unambiguous, algorithmizable, and implementable
way, so that morally acceptable, restricted behavior results;
Machine Explainability, on the other hand, enables systems
to explain their actions and argue for their decisions, so that
human users can understand and justifiably trust them. In this
paper, we stress the need to link and cross-fertilize these two
areas. We point out how Machine Ethics calls for Machine
Explainability, and how Machine Explainability involves Ma-
chine Ethics. We develop both these facets based on a toy
example from the context of medical care robots. In this
context, we argue that moral behavior, even if it were veri-
fiable and verified, is not enough to establish justified trust
in an autonomous system. It needs to be supplemented with
the ability to explain decisions and should thus be supple-
mented by a Machine Explanation component. Conversely,
such explanations need to refer to the system’s model- and
constraint-based Machine Ethics reasoning. We propose to
apply a framework of formal argumentation theory for the
task of generating useful explanations of the Machine Ex-
planation component and we sketch out how the content of
the arguments must use the moral reasoning of the Machine
Ethics component.

Introduction
Autonomous and semi-autonomous systems are pervading
the world we live in. These systems start to infringe upon
our lives and, in turn, we ourselves rapidly become more and
more dependent on their functionings. An important ques-
tion arises: How should machines be constrained, such that
they act morally acceptable towards humans? This question
concerns Machine Ethics – the search for formal, unambigu-
ous, algorithmizable and implementable behavioral con-
straints for systems, so as to enable them to exhibit morally
acceptable behavior. Although some researchers believe that
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implemented Machine Ethics is a sufficient precondition for
humans to reasonably develop trust in autonomous systems,
this paper discusses why this is not the case. We instead
feel the need to supplement Machine Ethics with means to
ascertain justified trust in autonomous systems – and other
desirable properties. After pointing out why this is impor-
tant, we will argue that there is one feasible supplement for
Machine Ethics: Machine Explainability – the ability of an
autonomous system to explain its actions and to argue for
them in a way comprehensible for humans. So Machine
Ethics needs Machine Explainability. This also holds vice
versa: Machine Explainability needs Machine Ethics, as it
is in need of a moral system as a basis for generating expla-
nations. Only if embedding explanations into a moral sys-
tem, these explanations can be validated and verified. And
only with validated and verified explanations, the trust in au-
tonomous systems can possibly emerge.

Related Work
Many works regarding Machine Ethics’ nature and possibil-
ities already exist (cf. [2], [24]). Likewise, much research
regarding whether we need such an approach at all – at least
in specific contexts like AI development (cf. [25]) – is avail-
able. As James H. Moore famously pointed out (cf. [22]),
Machine Ethics can be understood as a rather broad term,
ranging from purely morally motivated restrictions of the be-
havior of complex, and possibly autonomous, systems to the
implementation of full-fledged moral capacities, involving
deep, philosophical concepts of autonomy and deliberation,
as well as free will. While the latter is still concerned with
scenarios that remain science fiction – but are nevertheless
already subject of serious scientific debates (cf. [9], [18],
[23], [26]) – the former are already of great practical impor-
tance, because autonomous systems are already here.

In contrast to these works in the core of Machine Ethics,
as of yet advancements extending from Machine Ethics to-
wards Machine Explainability are scarce in the scientific lit-
erature. Machine Explainability aims at equipping complex
and autonomous systems with means to make their decisions
understandable to different groups of addressees. For in-
stance, the software doping cases that surfaced in the con-
text of the diesel emissions scandals made obvious that even
if no AI component is involved, the behavior of complex
systems can be hard to impossible to understand, and thus



virtually impossible to assess from a societal perspective.
What is needed in such cases, is an unambiguous specifica-
tion what distinguishes desired and permissible from unde-
sired and impermissible behavior, together with methods to
tell apart one from the other (cf. [4], [5], [11]). This asks for
ways to understand the reasoning of systems in a deep sense,
and echoes the same requirement regarding the behavior of
autonomous systems in their entirety, as it is increasingly
discussed in the scientific community, especially regarding
the establishment of trust and the possibility of trustworthi-
ness (cf. [1], [6], [19], [17]). But Machine Explainability
goes beyond the need to make autonomously made decisions
understandable and thus the systems trustworthy: Wherever
machines and artificial systems are meant to support human
decisions, mere support by unexplained decisions does not
suffice to ensure autonomy (in the philosophical meaning of
the word) (cf. [21] for a broad overview over the dimen-
sions of explainability). However, the links between Ma-
chine Ethics and Machine Explainability are not yet carved
out with scientific rigor. By writing this paper, we want to
undertake first steps into this direction.

The World of Medical Care Robots
We develop our thoughts, together with possible challenges
of Machine Ethics, by means of a toy example from the con-
text of medical care robots. Obviously, we need to keep
the example simple, so that we are able to pinpoint its most
important aspects while still being sufficiently general to ex-
emplify the important challenges arising with respect to Ma-
chine Ethics.
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Figure 1: The medical care robot’s realm

The medical care robot we consider works in a hospital’s
experimental area. There are up to three patients the robot
has to take care of. Each of these patients is in a separate
room (R1, R2, R3), and the rooms are connected by several
hallways. The spatial layout of the scenario is depicted in
Fig. 1. The robot spends energy when traveling along a hall-
way and needs a certain time span (i.e. a number of discrete
timesteps) to do so. The energy and time costs depend on the
distance traveled (distances are written next to the hallways).
For one unit of distance, the robot needs one unit of energy
and two units of time. At some point the robot’s battery (the
power budget of which is assumed always known) will be
depleted. To prevent this, there is a charging station (CS)
where the robot can recharge its battery. Once the recharg-
ing process is started, it will stop no earlier than needed to
fully recharge the battery.

In our scenario, the robot listens to requests. At each point
in time, each of the three patients may issue a request to the

robot, asking for a task of a specific priority. Although each
request has a priority when issued, this priority is not trans-
mitted to the robot. This is necessary, as otherwise the pa-
tients could get tempted to always issue tasks of the highest
priority in order to get preferential treatment.

The scenario provided so far can be described with
the following formalizations: At each point in time, the
robot can receive a request. Requests are tuples req =
〈r ∈ {R1, R2, R3} , t ∈ N+〉 of a room number and a time
stamp. With every request we associate a task, modeled as a
triple 〈p ∈ {L,M,H} , c ∈ N+, t ∈ N+〉 representing three
attributes: the task’s priority (high, medium and low), its
power cost (a positive integer), and the expected time con-
sumed by serving the task (again a positive integer). We will
use the notation t.a as a shorthand to refer to the attribute a
(according to the above introduced variable names) of some
tuple t, be it a request or a task. Serving a task is supposed
an atomic operation: once begun, the robot will not stop the
task before it is not served.

We limit the possible tasks connected to a request in our
example to the following general possibilities:

treq reanimate = 〈H, 5, 1〉 ,
treq fetch water = 〈p ∈ {L,M,H}, 1, 1〉 ,
treq fetch human = 〈p ∈ {L,M,H}, 1, 3〉 ,
treqgive medicine = 〈p ∈ {L,M}, 1, 1〉 ,

treq tidy up = 〈L, c ∈ {1, . . . , 5}, t ∈ {1, . . . , 5}〉

Note that these are prototypical tasks. In case of
treqreanimate all three properties are fixed – it will always
have highest priority, a power consumption of 5 and a time
consumption of 1. But for the other four types of tasks, one
or even all properties can take a certain range of values. The
set of possible combinations is called ReqTasks , it has car-
dinality 34. The association of requests to tasks is modeled
by a function: reqTask : Requests → ReqTasks .

The robot collects incoming requests in an input queue,
until they are served. The goal of our robot is to serve re-
quests (and to thereby carry out the associated tasks) without
ever running out of battery power. By assigning utilities to
serving requests and disutilities to not serving them and to
exhausting the battery, the robot’s operation can be reduced
to a classical planning problem.

Having this in mind, we can construct a very simple pro-
cedure to decide whether to serve the next request in its in-
put queue or whether to recharge instead.1 This procedure
lets the robot compare the expected utility of serving a re-
quest (and hence the associated task) to the expected util-
ity of recharging its battery. It then chooses the one with
greater utility. Here we have to bear in mind, that serv-
ing a request consists of not only the associated task, but
also of traveling to the associated room. First of all, the
function for calculating the request’s cost(s) comes down
to: cost(req) := costway(req) + cost task(req), where
costway(req) := dist(req .r, pos) are the costs associated

1We pretend for now that the robot knows the task associated
with a request. Later, we will drop this hypothesis for the reasons
mentioned above.



with traveling to the room the request is coming from (where
pos is the current position of the robot) and cost task(req) :=
reqTask(req).c are the costs associated with serving the task
behind the request. With this we can construct the func-
tion for evaluating the utilities for answering the request
answer req :

util(answer req) = util(req) · 1(cost(req) ≤ energy)

+ util(out of power) · 1(cost(req)
+ dist(CS, req .r) > energy)

+ util(¬req) · 1(cost(req) > energy)

Here util(out of power) < 0 is the penalty for exhaust-
ing the battery, util(¬req) < 0 is the disutility connected
to not serving the request and util(req) > 0 is the utility
connected to serving it.

By adjusting the utilities in distinct ways, we can enforce
specific decisions. For instance, by setting the utility of res-
cuing a person (through reanimation) higher than the disutil-
ity of exhausting the battery we would get the desired result
of human lives being more important than robots operating.2

After having this first glance at our scenario, the following
question emerges: Where does Machine Ethics kick in?

A Call for Machine Ethics
If Machine Ethics would boil down to simply adjusting the
utilities and disutilities in such a way that the induced robot
behavior entirely adheres to a, say, consequentialist picture
of morality, we apparently could integrate this in a decision
procedure as above. Given a full-fledged artificial system
that is meant to qualify as a moral agent, and adopting such
a picture of morality, adjusting the utilities, then, might very
well be everything there is when it comes to implementing
Machine Ethics. However, neither does our robot qualify as
a full-fledged moral agent, nor is a consequentialist picture
of morality common sense. Hence, we understand the task
of Machine Ethics to be more than finding acceptable utili-
ties.

Furthermore, especially regarding currently available au-
tonomous systems, Machine Ethics should embrace a rather
deflationary concept of morals anyway: It should allow
principle-based, unambiguous and formal guarantees that
restrict the autonomous system’s behavior in an way that
makes the system significantly morally better, without nec-
essarily implementing any moral theory or being morally
unquestionable. So, what are appropriate and useful restric-
tions for our robot?

Obviously, we can construct situations, in which maxi-
mizing the expected utility is not what we would see as
morally acceptable. Assume for instance our robot is in
room R1 and has to decide to either perform treq reanimate
there or to go back to the charging station. Let’s assume
further, that the robot has enough power to reanimate, but
then will not make it back to the charging station afterwards.
Assume now, that with high enough certainty other high pri-
ority tasks – say even other reanimations – will need to be

2We will, however, neither specify any utilities here, nor point
out a fixed way how they are to be calculated.

performed later on. If our robot performs the reanimation
now, he will not be able to perform the other reanimations
later. We can easily construct such a case in a way that will
make the expected utility of charging higher than the ex-
pected utility of performing the current reanimation task.

At least some ethicists will agree that the robot ought not
to recharge now. It should give preference to rescuing the
life at issue at the moment of decision. But even an ethi-
cist that does not agree with this, will likely subscribe to
the claim that a robot should not be constructed in such a
way. This is because of trust: Imagine that in such cases the
robot would be witnessed to turn around and leave toward
its charging station. People would not trust that robot – in-
dependent of any other positive overall effects promised by
using health care robots. Consequently, the plausibly desir-
able deployment of health care robots will be slowed down.
People would not want to put their lives into the hands of
such autonomous systems.3 So, let us presuppose that the
robot ought not to weight lives that way.

Thus, apart from being able to compute the relevant ex-
pected utilities, the systems must be equipped with a prior-
itized list of morally motivated principles that strictly con-
strain its behavior. The robot has to consider a multitude of
things, so as to decide in perfect adherence to these princi-
ples: the priorities and costs associated to currently queued
requests, the possibility of a new request (including its pri-
ority as well as its cost) arriving in the next time step(s) and
its battery’s power level.

To formalize the base problem, we let A1 be the action
of answering the request and A2 the action of recharging
the battery. We define Ai > Aj , with i, j ∈ {1, 2} and
i 6= j as indicating that Ai is to be preferred to Aj by prin-
ciple and A1 ≈ A2 as expressing that none of the options
is to be preferred by principle. Further, let prio(req) :=
reqTask(req).p yield the priority of the task associated with
the request. Then the above principles might be encoded in
a decision function dec which is called prior to the utility-
based decision procedure discussed above:4

dec(req) =


A1 > A2, if prio(req) = H

∧ cost task(req) ≤ energy
A1 < A2, if prio(req) = L ∧ cost task(req)

+ dist(CS, req .r) > energy
A1 ≈ A2, otherwise

In all cases which are not covered by the first two principles,
3A typical example for autonomous systems which promise to

bring about positive overall effects are autonomous cars. It seems
plausible that a higher deployment of them will most likely lead to a
reduced number of casualties due to car accidents. This number can
be further reduced by using autonomous cars which act according
to utilitarianism. But, as studies indicate (cf. [7], [8]), such cars
would not be accepted and thus not gain market share.

4It is important to note that the above checks for sufficient en-
ergy levels does not include the robot being able to return to the
charging station: it just includes the successful completion of the
task. This fits our above sketched scenario: if the robot would not
even have enough power to perform the reanimation task, but still
enough to return to its charging station – in other words, if it has
exactly 4 units of power left – it would be morally permissible for
it to return to the charging station without trying to reanimate.



dec does not yield a clear preference. In this case the robot
follows the original utility-based decision procedure, based
on solving the planning problem.

Handling Uncertainty
Up to this point we did not account for a peculiar (but well-
justified) assumption, namely that tasks associated to indi-
vidual requests are concealed from the robot. First and fore-
most this means that priorities are not transmitted. Thus, the
robot does not have sufficient information for perfect deci-
sion making in the above sense. Consequently, it can at most
use its predictive capabilities, essentially based on statisti-
cal estimates regarding past requests. Nevertheless behavior
will occur that looks like defective behavior from the out-
side. However, given the overall system, we cannot expect
better from our machine.5

In this regard it seems worth to discuss whether the robot’s
design, respectively the design of the overall system the
robot is part of, is flawed. So, we have to ask: should
the robot have the information required for perfect decision
making? The answer is no. Recall that we had good reasons
to conceal the requests’ priority from the robot. Otherwise,
by assumption, patients will often misuse the high priority
for low priority tasks, rendering the whole idea of priorities
useless.

So, we conclude that sometimes it is justifiable to delib-
erately design a system acting based on imperfect informa-
tion. This is the case especially when prima facie perfect
information compromises its own usefulness. Then we can-
not expect autonomous systems to behave in a perfect man-
ner. This trade-of situation however does not entail that we
cannot have any meaningful expectations about our robot.
We just cannot expect that it will behave perfectly. In other
words, the upshot is:

Justifiably imperfect information can still lead to
morally acceptable and potentially verifiable, but nev-
ertheless defective, behavior.

To build systems enabling this kind of behavior is a goal of
pragmatic Machine Ethics.

In this light, it seems valuable to look again at the util -
function. Thus far, this function did not come with any prob-
lems: the task associated with the given request was clear
and therefore the costs associated with serving it. Every-
thing to evaluate it was assumed to be at hand. However,
at the current point, the robot neither has an idea about the
task requested nor about the costs associated to it. What is
needed to save this function? The obvious solution is to shift
to the well-established notion of expected utilities, where the
util -function accumulates the utility of each task weighted
with the probabilities of each individual task that may occur.

5This result is nothing new: after all, imperfect and incomplete
information can also bring about blatant human misbehavior. Typ-
ically, we tend to see such cases as blameless (because excused)
wrongdoings – especially, when the epistemic shortcomings are
outside of the agents control (cf. [3]).

This changes the util -function as follows:6

EU (answer req) =
∑

treq∈ReqTasks

P (treq) ·

(util(treq) · 1(cost(treq) ≤ energy)

+ util(out of power) · 1(cost(treq)
+ dist(CS, req i.r) > energy)

+ util(¬treq) · 1(cost(treq) > energy))

Obviously, with this shift to maximizing expected instead
of actual utility, imperfect behavior follows inevitably. This
aspect of deliberately build-in imperfection gets essential
when analyzing the behavior after an apparent misbehav-
ior occurred. Where did the prima facie misbehavior come
from? Was it misbehavior after all or are we misjudging a
correctly made decision?

Shortcomings of Machine Ethics
To provide intuitive answers to those questions we return to
our medical example. We assume that the robot knows the
approximate probabilities of an task of each of these prior-
ities being issued as well as the expected costs associated
with serving it from its already prolonged usage.7 At this
point it is beneficial to describe the robot’s knowledge: at
each discrete timestep the robot knows:
• its power state,
• its position,
• the probability density function for tasks,
• and a queue of requests it has to serve.

Now suppose the following scenario: while the robot’s
battery’s power level is quite okay, it got a request with a
task of the highest priority associated8, but instead of rush-
ing to the patient, it leisurely goes to the charging station and
recharges.

How do we reason in these cases? Did the robot read its
battery status wrongly? Did it calculate the probability for
the request’s cost wrongly, or did it get the principles wrong?
Did something else go wrong (other sensor failures, etc.)?
Or was it just due to bad luck in the sense of an unfitting
prediction of the priority?

Without having plausible answers to these questions, we
believe that even verified and certified build-in morals do not

6Notice, that with respect to its utility, answering a request
comes down to moving to an appropriate room and then serving
the task. So we can identify the utility of answering the request
with the utility of serving the task.

7It is important to note that the probability function emerging by
doing so could be time-varying. For instance, the time of the year
and/or day may matter. This is intended, as it is quite plausible
to assume that e.g. strokes may appear more often at midday in
summer.

8The priority is assumed to be unknown to the robot. Never-
theless, it is known or obvious to the observing humans. Thus,
in combination with the (not too low) battery power level, the ob-
server will plausibly expect a different behavior: the robot appar-
ently should have helped the patient because it would still have
been able to recharge afterwards.



suffice, because people still cannot and, more importantly,
should not trust the robot. Yet again, the notion of trust in
autonomous systems gets emphasized. As we previously al-
ready pointed out, we think that it is important for humans
to build up trust in (morally well-behaving) autonomous sys-
tems:

Users trusting in autonomous systems is a prerequisite
for their prevalence.

And the prevalence of (morally well-behaving) autonomous
systems is something we want to bring about, as it is most
likely connected to many beneficial consequences. The
problem, however, is (as we tried to rationalize), that trust in
autonomous systems needs more than just Machine Ethics.
Autonomous systems are needed that explain themselves
and justify their action. Thus, we need Machine Explain-
ability.

A Call for Machine Explainability
But what is the explanation supposed to add in addition to
external assessments by users and observers? By explaining,
it should simply convey that its reasons to act are sufficiently
good – without twisting the truth or making up something
that does not reflect its real reasons. In other words, one of
the most important principles we find necessary for estab-
lishing trust in robot behavior is:

Explanations are provided that certify that the robot
whenever acting, acts for good reasons.

In the example setting, this comes with a guarantee that the
robot always serves requests, except if there are good and
explainable reasons for not doing so. But we want this prin-
ciple to be understood in a very general way – even in situ-
ations where nothing went wrong, it is plausible to enforce
the robot to be able to give good reasons for its actions. And
humans should be able to go through the robot’s reasoning
to see that, for instance, irrelevant features have no impact.
As a concrete example, manually changing the internal rep-
resentation of the patient’s complexion, age, gender and/or
wealth should not lead to a change of the robot treating this
patient.

The principle has further advantages, besides being nec-
essary for trust. For autonomous systems with nontrivial
machine-learning components it can provably be shown that
a minimal change in inputs might lead to a major change
in output (cf. [10], [15]). Applied to our scenario, this
could lead to rather peculiar phenomena: For example in
case of a rather mild sensor failure (the camera introduces a
slight noise, which could be caused by a lens which is not
completely clean), the robot mistakes humans for animals or
even furniture ([15] has a good example of how something
like this can happen). However, we would like the robot to
make robust decisions in order to be able to operate consis-
tently in such a sensitive environment. If necessary, it should
be able to explain its (un)certainty in a given decision and
what it would take to arrive at a different one. Recent re-
search has demonstrated, that it is at least possible to reveal
how a variance in inputs affects the outputs (cf. [16]). While
this is already a good basis to work towards robust decisions,

it also seems to be a promising starting point for developing
methods of generating explanations in the first place.
To sum up:

Only by guaranteeing robust and explainable decisions,
the robot grounds the foundation for humans trusting in
it.

Machine Explanations as Arguments
All our previous discussion – although seemingly context
dependent with respect to our robot example – is meant to
lead to a core aspect of how we envision explanations. When
the robot takes a request and evaluates whether it should
serve it or not, it first and foremost has to apply the deci-
sion function dec on the possible tasks associated with the
request. At this point in particular the uncertainty about the
task and its properties impede the reasoning. We have al-
ready sketched how the classical planning component, i.e.
the utility-based optimization, can be performed under un-
certainty. But what about the decision taken further up-
stream in the overall decision process, where encoded prin-
ciples are evaluated? How can we incorporate uncertainty in
the dec-function?

For this purpose, one might resort to an argumentation-
based approach. As an initial starting point for further
research the following three step procedure seems to be
proper:

In a first step we construct arguments for each possible
case – for each of the possible 34 types of tasks that may be
concealed by a request. Given dec, the robot knows what it
ought to do in each possible case under consideration. So,
we have 34 arguments of the form:

Argument for case treq i: Arg i
(Pdec) if treq i = reqTask(req) then dec(req)

(Pi) reqTask(req) = treq i

(Ci) Thus: dec(req)

Here, Pdec results from our perfect dec-function, Pi is true
by case distinction and dec(x) evaluates to A1◦A2 for some
◦ ∈ {<,≈, >}. Note that the question which conclusion (of
the form A1 ◦ A2) arises for which of the treq i is depen-
dent (among others) on the position of the robot in the envi-
ronment (because this may determine whether the robot has
enough energy to serve the request and thus to perform the
task in question). Each of these arguments can be interpreted
as having a certain strength. In our case it seems reason-
able to identify the strength of each of the arguments with
the probability of the case. Note that, hence, the strength
of the arguments depends on everything the probability de-
pends on. Thus, dependent on the specific context, different
arguments will result.

In a second step, all arguments backing the same conclu-
sion are aggregated into one argument. Consequently, in our
case, this step results in three such aggregative arguments
(discussed below). The joined strength of each of the re-
sulting arguments depends on the strengths of all supporting
case-distinct arguments. While it seems natural to accumu-
late the strength of the incoming arguments, this is not the



only possible way of handling them. The correct way de-
pends on constraints imposed on the properties of our argu-
mentation.9

To be concrete, assume that given the current energy level
of the robot n cases result in A1 > A2. We would then have

Argument for A1: Arg>
(Pi1 ) With probability Probi1 : A1 > A2

...
...

(Pin ) With probability Probin : A1 > A2

(C>) Thus: With probability
Prob> :=

∑n
j=1 Probij : A1 > A2

Finally, each of the three different conclusions of the result-
ing arguments are used as premise for a final argument in
order to determine the robot’s decision. One initially plau-
sible way for arriving at a final conclusion, is to force the
robot to decide according to the recommendation with the
highest probability. Call this Pmax . This results in an argu-
ment of the following structure (here under the assumption
that Prob> corresponds to the greatest weight):

Final Argument: Argfin

(P>) With probability Prob>: A1 > A2

(P<) With probability Prob<: A1 < A2

(P≈) With probability Prob≈: A1 ≈ A2

(Pmax ) Follow the principle which has the greatest
weight

(Ctmp) Thus: Follow A1 > A2

(Cfinal ) Thus: A1 (Answer the request!)

Following this decision procedure, the robot not only de-
cides on the basis of dec, it also, by deciding, generates ar-
guments for its decision.

These arguments (with their associated strengths) result-
ing from the above sketched decision procedure can be rep-
resented as a directed graph. Here, the graph’s nodes rep-
resent the arguments and the graph’s edges encode the rela-
tions between them, weighted with the arguments’ strengths.
With this, we have what can be called a argumentation
graph. In case of our “reanimate or not”-example one level
of this graph could look like what is depicted in Fig. 2. In
this graph the weight of the P>-argument (serve the task) is
the highest, and as a result the reanimation is also weighted
correspondingly high. As there may be statistical evidence
(reflected by probabilities) that in the future more patients
need reanimation, the P≈-Argument (estimate the utilities)
plays rather favorable towards the not reanimate option.
However, the strength associated to the “reanimate” option
outweighs the strength of the “not reanimate” option, so the
robot will actually carry out the reanimation. Note, that it
would do so even if the robot will be unable to do further

9We propose axiomatic approaches to explanations. We then
need to find proper aggregation principles resulting in arguments
encoding explanations satisfying those axioms. This is, however,
clearly beyond the scope of this paper.
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Figure 2: The decision process expressed in an argumenta-
tion graph

tasks in the immediate future (until it is recharged manu-
ally). This would in fact be the intended behavior.

As we will discuss in the next section, this kind of argu-
mentation graph might be used as a basis for explanations
of the right kind; that it is in fact predestined to be captured
with formal argumentation theory.

Advantages of Explanations as Arguments
Can argumentation graphs be used as basis for explanations?
Answering this question (comprehensively) is outside the
scope of this paper. After all, there are many kinds of ex-
planations: scientific explanations in the form of deductive-
nomological models, causal explanations that relate causes
with their effects, psychological explanations – and many
more. What we are looking for are explanations that are, in
terms of Davidson ([12]), rationalizations. These rational-
izations are meant to make available to us the reasons of why
the explained system decided and/or acted the way it did.

We believe that the toy example discussed above provides
some evidence that arguments for actions are what we are
after. What needs to be captured by an explanation, is the
internal reasoning, the weighing of pros and cons of argu-
ments. Whatever enters this deliberative process, it defi-
nitely will involve the reasons that finally lead to the action,
together with those pointing into other directions, but where
outweighed. Another way of thinking about this approach is
the following: Explaining an action or a decision consists in
giving reasons for it – and arguments can be understood as
encoded reasons. Thus, when an idealized decision-making
process (in the sense of everyday understanding of the term)
is interpreted as the weighing of reasons in order to deter-
mine the right action or decision,10 then decision-making
presented as an argumentation graph of pro and contra ar-
guments for (or against) the decision or action, can be in-

10As already proposed by Benjamin Franklin (cf. [14]).



terpreted as a formal presentation of a deliberative reason-
weighing process. In this way, the decision making used in
an autonomous system (if based on collecting and weigh-
ing arguments for and against it) is made transparent and ra-
tionalized. So, since argumentation-based decision-making
models idealize deliberation using traditional human con-
cepts, the obtained explanations can be expected to be com-
prehensible explanations (to put it into the terms of [6]: we
have graspable explanations and thus fulfill graspability).

Additionally, this kind of reasoning is non-monotonic –
further information or evidence may require the systems to
retract from its decision – and arguments are the tool for
non-monotonic reasoning as Dung famously pointed out (cf.
[13]).

So, provided argument-based reasoning is an appropri-
ate approach to decision-making in the context of Machine
Ethics (which we think it is), and arguments are the right
kind of structure to encode explanations, adopting a frame-
work of formal argumentation theory is the obvious choice
of tool for modeling and implementing these issues.11 Ma-
chine Explainability, now, is a byproduct of artificial moral
decision making, since the explanations are (or are extracted
from) the argumentation graphs that lead to a decision.

Finally, using an argumentation framework would allow
for thorough and quite common descriptions of the deliber-
ations at work. The robot would have to consider its prin-
ciples (i.e. something like desires, specifying how things
ought to be) and its model (i.e. something like human be-
liefs, representing how things apparently are from the point
of view of the system) in order to decide and justify its de-
cisions. To put it into other terms: The robot desires to act
according to its principles and does so by operating consis-
tent with its beliefs.12

Machine Ethics Revisited
Having explained how explanations for autonomous systems
could look like, we can now return to Machine Ethics. How
does having these kinds of explanations affect our possibil-
ities in Machine Ethics? The possibility to generate expla-
nations is meant to evoke trust in our robot. Some moral
theories, however, demand more than the robot just behav-
ing de facto morally adequate. They demand the robot to
behave morally adequate, because of the right reasons. Be-
having morally adequate because of the right reasons needs

11What if our robot decides in an opaque way? If the aggre-
gation of options is done, for instance, by a learned component?
Then, in principle, the argumentation graphs could be derived in
hindsight (i.e. by some process as sketched in [6]). This might
come with the problem of our justifications being possibly post hoc
rationalizations and, thus, not reflecting the true reasons or reason-
ing (i.e. one needs to guarantee what [6] calls accuracy). How can
we make sure that the robot does not simply give the explanation
which would justify its behavior, although it acted on a delibera-
tion which prima facie should have been forbidden? We leave this
problem for future research.

12It is admittedly highly controversial, whether the robot, in
any meaningful way, really has beliefs and desires. Here we just
want to use this vocabulary to point out the similarity with human
thought processes.

counterfactual checking. It is easy to exemplify this thought
with our toy example. Let us assume the robot has access to
the patient’s medical record. At some point, a new field gets
introduced there: the patient’s socio-economic status. Up
until now, the robot always behaved morally correct, and we
want this to continue. Thus, its behavior needs to ignore the
newly introduced field in its decision to answer a request,
but is admitted to consider it when it decides whether to
fetch premium or normal water. To make sure that this is
indeed the case, generated explanations come in handy: We
can inspect whether or not the field went into the specific
deliberation process, as documented by the associated ex-
planation. However, we may want ensure the possibility to
check or restrict the impact of new fields even before they
are introduced. This would mean having the design-time
possibility to incorporate new variables in the robot’s delib-
eration process, together with means to verify, pinpoint and
safeguard their impact. Similar thoughts can also be applied
to age, complexion, etc. Developing this approach further
might become an avenue for verifiable Machine Ethics, and
it might be the point where new regulations could hook-in.13

Conclusion
This paper argued that there is a need for Machine Ethics
and Machine Explainability to augment each other. We de-
veloped various facets in support of this view by discussing
a small running example. In a setting with uncertainty, we
proposed to use formal argumentation theory to explain de-
cision making processes that rely on both classical optimiza-
tion and principle-based behavioral constraints.

The view that Machine Ethics and Machine Explainability
are supplemental is not as widespread as we feel it should be.
To put it into a concise and conclusive formulation:14

Machine Explainability without Machine Ethics is
empty, Machine Ethics without Machine Explainabil-
ity is blind.

Many points throughout our discussion have been sketchy
or too simplistic, either because we needed to stay simple,
or because we lacked further research. Some possible ques-
tions which can serve as a basis for this research include:
(i) What is the right basis for allocating arguments in for-
malizing explanations? How do morally acceptable deliber-
ation processes look like? What is to be considered there?
How are normative reasons involved in this? (ii) How can
argumentation theory be used as a formal basis to prove cer-
tain properties of a decision? (If there is no reference to
e.g. complexion in an argument, it makes no difference in
the deliberation.)

We hope that those topics will receive more attention in
the future, so that the notion of Machine Ethics and Machine
Explainability will become more developed.

13Not to mention new regulations postulating a Right to Ex-
planation itself, like the European Union General Data Protection
Regulation (enacted 2016, taking effect 2018) or the Equal Credit
Opportunity Act in the US, which demands a “statement of rea-
sons for adverse action [which] must be specific and indicate the
principal reason(s) for the adverse action”.

14Inspired by Immanuel Kant (cf. [20]).
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