Designing an AI-enabled Bundling Generator in an Automotive Case Study

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

4495

Ending Page

Alternative Title

Abstract

Procurement and marketing are the main boundary-spanning functions of an organization. Some studies highlight that procurement is less likely to benefit from artificial intelligence emphasizing its potential in other functions, i.e., in marketing. A case study in the automotive industry of the bundling problem utilizing the design science approach is conducted from the perspective of the buying organization contributing to theory and practice. We rely on information processing theory to create a practical tool that is augmenting the skills of expert buyers through a recommendation engine to make better decisions in a novel way to further save costs. Thereby, we are adding to the literature on spend analysis that has mainly been looking backward using historical data of purchasing orders and invoices to infer saving potentials in the future – our study supplements this approach with forward-looking planning data with inherent challenges of precision and information-richness.

Description

Keywords

The Digital Supply Chain of the Future: Applications, Implications, Business Models, artificial intelligence, b2b marketing, bundling problem, procurement, purchasing-marketing interface

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email [email protected] if you need this content in ADA-compliant format.