Authors:
Ying Zhao
;
Jacob Jones
and
Douglas MacKinnon
Affiliation:
Naval Postgraduate School, Monterey, CA and U.S.A.
Keyword(s):
Causal Learning, Counterfactual Analysis, Cause and Effect, Supply Chain Vulnerability, Associations, Correlations, Lexical Link Analysis, Data Mining.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Business Analytics
;
Computational Intelligence
;
Data Analytics
;
Data Engineering
;
Evolutionary Computing
;
Information Extraction
;
Knowledge Discovery and Information Retrieval
;
Knowledge-Based Systems
;
Machine Learning
;
Soft Computing
;
Structured Data Analysis and Statistical Methods
;
Symbolic Systems
Abstract:
This paper illustrates a methodology of causal learning using pair-wise associations discovered from data. Taking advantage of a U.S. Department of Defense supply chain use case, this causal learning approach was substantiated and demonstrated in the application of discovering supply chain vulnerabilities. By integrating lexical link analysis, a data mining tool used to discover relationships in specific vocabularies or lexical terms with pair-wise causal learning, supply chain vulnerabilities were recognized. Evaluation of results from this methodology reveals supply chain opportunities, while exposing weaknesses to develop a more responsive and efficient supply chain system.