Computer Science > Cryptography and Security
[Submitted on 24 Nov 2024]
Title:Data Lineage Inference: Uncovering Privacy Vulnerabilities of Dataset Pruning
View PDF HTML (experimental)Abstract:In this work, we systematically explore the data privacy issues of dataset pruning in machine learning systems. Our findings reveal, for the first time, that even if data in the redundant set is solely used before model training, its pruning-phase membership status can still be detected through attacks. Since this is a fully upstream process before model training, traditional model output-based privacy inference methods are completely unsuitable. To address this, we introduce a new task called Data-Centric Membership Inference and propose the first ever data-centric privacy inference paradigm named Data Lineage Inference (DaLI). Under this paradigm, four threshold-based attacks are proposed, named WhoDis, CumDis, ArraDis and SpiDis. We show that even without access to downstream models, adversaries can accurately identify the redundant set with only limited prior knowledge. Furthermore, we find that different pruning methods involve varying levels of privacy leakage, and even the same pruning method can present different privacy risks at different pruning fractions. We conducted an in-depth analysis of these phenomena and introduced a metric called the Brimming score to offer guidance for selecting pruning methods with privacy protection in mind.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.