Mathematics > Numerical Analysis
[Submitted on 29 Oct 2024]
Title:Plane stress finite element modelling of arbitrary compressible hyperelastic materials
View PDF HTML (experimental)Abstract:Modelling the large deformation of hyperelastic solids under plane stress conditions for arbitrary compressible and nearly incompressible material models is challenging. This is in contrast to the case of full incompressibility where the out-of-plane deformation can be entirely characterised by the in-plane components. A rigorous general procedure for the incorporation of the plane stress condition for the compressible case (including the nearly incompressible case) is provided here, accompanied by a robust and open source finite element code. An isochoric/volumetric decomposition is adopted for nearly incompressible materials yielding a robust single-field finite element formulation. The nonlinear equation for the out-of-plane component of the deformation gradient is solved using a Newton-Raphson procedure nested at the quadrature point level. The model's performance and accuracy are made clear via a series of simulations of benchmark problems. Additional challenging numerical examples of composites reinforced with particles and fibres further demonstrate the capability of this general computational framework.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.