Computer Science > Computers and Society
[Submitted on 11 Oct 2024 (v1), last revised 29 Oct 2024 (this version, v2)]
Title:Establishing Nationwide Power System Vulnerability Index across US Counties Using Interpretable Machine Learning
View PDFAbstract:Power outages have become increasingly frequent, intense, and prolonged in the US due to climate change, aging electrical grids, and rising energy demand. However, largely due to the absence of granular spatiotemporal outage data, we lack data-driven evidence and analytics-based metrics to quantify power system vulnerability. This limitation has hindered the ability to effectively evaluate and address vulnerability to power outages in US communities. Here, we collected ~179 million power outage records at 15-minute intervals across 3022 US contiguous counties (96.15% of the area) from 2014 to 2023. We developed a power system vulnerability assessment framework based on three dimensions (intensity, frequency, and duration) and applied interpretable machine learning models (XGBoost and SHAP) to compute Power System Vulnerability Index (PSVI) at the county level. Our analysis reveals a consistent increase in power system vulnerability over the past decade. We identified 318 counties across 45 states as hotspots for high power system vulnerability, particularly in the West Coast (California and Washington), the East Coast (Florida and the Northeast area), the Great Lakes megalopolis (Chicago-Detroit metropolitan areas), and the Gulf of Mexico (Texas). Heterogeneity analysis indicates that urban counties, counties with interconnected grids, and states with high solar generation exhibit significantly higher vulnerability. Our results highlight the significance of the proposed PSVI for evaluating the vulnerability of communities to power outages. The findings underscore the widespread and pervasive impact of power outages across the country and offer crucial insights to support infrastructure operators, policymakers, and emergency managers in formulating policies and programs aimed at enhancing the resilience of the US power infrastructure.
Submission history
From: Junwei Ma [view email][v1] Fri, 11 Oct 2024 06:37:05 UTC (22,232 KB)
[v2] Tue, 29 Oct 2024 03:20:42 UTC (22,248 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.