Mathematics > Numerical Analysis
[Submitted on 25 Oct 2024]
Title:Analyticity and Stable Computation of Dirichlet-Neumann Operators for Laplace's Equation under Quasiperiodic Boundary Conditions in Two and Three Dimensions
View PDF HTML (experimental)Abstract:Dirichlet-Neumann Operators (DNOs) are important to the formulation, analysis, and simulation of many crucial models found in engineering and the sciences. For instance, these operators permit moving-boundary problems, such as the classical water wave problem (free-surface ideal fluid flow under the influence of gravity and capillarity), to be restated in terms of interfacial quantities, which not only eliminates the boundary tracking problem, but also reduces the problem dimension. While these DNOs have been the object of much recent study regarding their numerical simulation and rigorous analysis, they have yet to be examined in the setting of laterally quasiperiodic boundary conditions. The purpose of this contribution is to begin this investigation with a particular eye towards the problem of more realistically simulating two and three dimensional surface water waves. Here we not only carefully define the DNO with respect to these boundary conditions for Laplace's equation, but we also show the rigorous analyticity of these operators with respect to sufficiently smooth boundary perturbations. These theoretical developments suggest a novel algorithm for the stable and high-order simulation of the DNO, which we implement and extensively test.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.