Computer Science > Machine Learning
[Submitted on 16 Sep 2024]
Title:Toward Mitigating Sex Bias in Pilot Trainees' Stress and Fatigue Modeling
View PDF HTML (experimental)Abstract:While researchers have been trying to understand the stress and fatigue among pilots, especially pilot trainees, and to develop stress/fatigue models to automate the process of detecting stress/fatigue, they often do not consider biases such as sex in those models. However, in a critical profession like aviation, where the demographic distribution is disproportionately skewed to one sex, it is urgent to mitigate biases for fair and safe model predictions. In this work, we investigate the perceived stress/fatigue of 69 college students, including 40 pilot trainees with around 63% male. We construct models with decision trees first without bias mitigation and then with bias mitigation using a threshold optimizer with demographic parity and equalized odds constraints 30 times with random instances. Using bias mitigation, we achieve improvements of 88.31% (demographic parity difference) and 54.26% (equalized odds difference), which are also found to be statistically significant.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.