Electrical Engineering and Systems Science > Systems and Control
[Submitted on 9 Sep 2024 (v1), last revised 20 Nov 2024 (this version, v2)]
Title:Almost Global Trajectory Tracking for Quadrotors Using Thrust Direction Control on $\mathcal{S}^2$
View PDF HTML (experimental)Abstract:Many of the existing works on quadrotor control address the trajectory tracking problem by employing a cascade design in which the translational and rotational dynamics are stabilized by two separate controllers. The stability of the cascade is often proved by employing trajectory-based arguments, most notably, integral input-to-state stability. In this paper, we follow a different route and present a control law ensuring that a composite function constructed from the translational and rotational tracking errors is a Lyapunov function for the closed-loop cascade. In particular, starting from a generic control law for the double integrator, we develop a suitable attitude control extension, by leveraging a backstepping-like procedure. Using this construction, we provide an almost global stability certificate. The proposed design employs the unit sphere $\mathcal{S}^2$ to describe the rotational degrees of freedom required for position control. This enables a simpler controller tuning and an improved tracking performance with respect to previous global solutions. The new design is demonstrated via numerical simulations and on real-world experiments.
Submission history
From: Mirko Leomanni [view email][v1] Mon, 9 Sep 2024 15:14:09 UTC (4,570 KB)
[v2] Wed, 20 Nov 2024 11:07:47 UTC (4,570 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.