Computer Science > Sound
[Submitted on 25 Jun 2024]
Title:Spatial Voice Conversion: Voice Conversion Preserving Spatial Information and Non-target Signals
View PDF HTML (experimental)Abstract:This paper proposes a new task called spatial voice conversion, which aims to convert a target voice while preserving spatial information and non-target signals. Traditional voice conversion methods focus on single-channel waveforms, ignoring the stereo listening experience inherent in human hearing. Our baseline approach addresses this gap by integrating blind source separation (BSS), voice conversion (VC), and spatial mixing to handle multi-channel waveforms. Through experimental evaluations, we organize and identify the key challenges inherent in this task, such as maintaining audio quality and accurately preserving spatial information. Our results highlight the fundamental difficulties in balancing these aspects, providing a benchmark for future research in spatial voice conversion. The proposed method's code is publicly available to encourage further exploration in this domain.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.