Electrical Engineering and Systems Science > Systems and Control
[Submitted on 23 Jun 2024]
Title:Deep-MPC: A DAGGER-Driven Imitation Learning Strategy for Optimal Constrained Battery Charging
View PDF HTML (experimental)Abstract:In the realm of battery charging, several complex aspects demand meticulous attention, including thermal management, capacity degradation, and the need for rapid charging while maintaining safety and battery lifespan. By employing the imitation learning paradigm, this manuscript introduces an innovative solution to confront the inherent challenges often associated with conventional predictive control strategies for constrained battery charging. A significant contribution of this study lies in the adaptation of the Dataset Aggregation (DAGGER) algorithm to address scenarios where battery parameters are uncertain, and internal states are unobservable. Results drawn from a practical battery simulator that incorporates an electrochemical model highlight substantial improvements in battery charging performance, particularly in meeting all safety constraints and outperforming traditional strategies in computational processing.
Submission history
From: Jorge Esteban Espin [view email][v1] Sun, 23 Jun 2024 02:36:02 UTC (3,084 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.