Computer Science > Artificial Intelligence
[Submitted on 20 Jun 2024]
Title:Enhancing Monotonic Modeling with Spatio-Temporal Adaptive Awareness in Diverse Marketing
View PDF HTML (experimental)Abstract:In the mobile internet era, the Online Food Ordering Service (OFOS) emerges as an integral component of inclusive finance owing to the convenience it brings to people. OFOS platforms offer dynamic allocation incentives to users and merchants through diverse marketing campaigns to encourage payments while maintaining the platforms' budget efficiency. Despite significant progress, the marketing domain continues to face two primary challenges: (i) how to allocate a limited budget with greater efficiency, demanding precision in predicting users' monotonic response (i.e. sensitivity) to incentives, and (ii) ensuring spatio-temporal adaptability and robustness in diverse marketing campaigns across different times and locations. To address these issues, we propose a Constrained Monotonic Adaptive Network (CoMAN) method for spatio-temporal perception within marketing pricing. Specifically, we capture spatio-temporal preferences within attribute features through two foundational spatio-temporal perception modules. To further enhance catching the user sensitivity differentials to incentives across varied times and locations, we design modules for learning spatio-temporal convexity and concavity as well as for expressing sensitivity functions. CoMAN can achieve a more efficient allocation of incentive investments during pricing, thus increasing the conversion rate and orders while maintaining budget efficiency. Extensive offline and online experimental results within our diverse marketing campaigns demonstrate the effectiveness of the proposed approach while outperforming the monotonic state-of-the-art method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.