Computer Science > Databases
[Submitted on 10 Jun 2024 (v1), last revised 12 Jun 2024 (this version, v2)]
Title:Incremental Sliding Window Connectivity over Streaming Graphs
View PDF HTML (experimental)Abstract:We study index-based processing for connectivity queries within sliding windows on streaming graphs. These queries, which determine whether two vertices belong to the same connected component, are fundamental operations in real-time graph data processing and demand high throughput and low latency. While indexing methods that leverage data structures for fully dynamic connectivity can facilitate efficient query processing, they encounter significant challenges with deleting expired edges from the window during window updates. We introduce a novel indexing approach that eliminates the need for physically performing edge deletions. This is achieved through a unique bidirectional incremental computation framework, referred to as the BIC model. The BIC model implements two distinct incremental computations to compute connected components within the window, operating along and against the timeline, respectively. These computations are then merged to efficiently compute queries in the window. We propose techniques for optimized index storage, incremental index updates, and efficient query processing to improve BIC effectiveness. Empirically, BIC achieves a 14$\times$ increase in throughput and a reduction in P95 latency by up to 3900$\times$ when compared to state-of-the-art indexes.
Submission history
From: Chao Zhang [view email][v1] Mon, 10 Jun 2024 19:33:13 UTC (2,712 KB)
[v2] Wed, 12 Jun 2024 20:57:51 UTC (3,089 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.