Computer Science > Software Engineering
[Submitted on 30 Apr 2024 (v1), last revised 6 Oct 2024 (this version, v3)]
Title:GUing: A Mobile GUI Search Engine using a Vision-Language Model
View PDF HTML (experimental)Abstract:Graphical User Interfaces (GUIs) are central to app development projects. App developers may use the GUIs of other apps as a means of requirements refinement and rapid prototyping or as a source of inspiration for designing and improving their own apps. Recent research has thus suggested retrieving relevant GUI designs that match a certain text query from screenshot datasets acquired through crowdsourced or automated exploration of GUIs. However, such text-to-GUI retrieval approaches only leverage the textual information of the GUI elements, neglecting visual information such as icons or background images. In addition, retrieved screenshots are not steered by app developers and lack app features that require particular input data.
To overcome these limitations, this paper proposes GUing, a GUI search engine based on a vision-language model called GUIClip, which we trained specifically for the problem of designing app GUIs. For this, we first collected from Google Play app introduction images which display the most representative screenshots and are often captioned (i.e.~labelled) by app vendors. Then, we developed an automated pipeline to classify, crop, and extract the captions from these images. This resulted in a large dataset which we share with this paper: including 303k app screenshots, out of which 135k have captions. We used this dataset to train a novel vision-language model, which is, to the best of our knowledge, the first of its kind for GUI retrieval. We evaluated our approach on various datasets from related work and in a manual experiment. The results demonstrate that our model outperforms previous approaches in text-to-GUI retrieval achieving a Recall@10 of up to 0.69 and a HIT@10 of 0.91. We also explored the performance of GUIClip for other GUI tasks including GUI classification and sketch-to-GUI retrieval with encouraging results.
Submission history
From: Jialiang Wei [view email][v1] Tue, 30 Apr 2024 18:42:18 UTC (12,034 KB)
[v2] Mon, 2 Sep 2024 14:24:55 UTC (11,583 KB)
[v3] Sun, 6 Oct 2024 15:59:06 UTC (11,467 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.