Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 30 Apr 2024]
Title:AdaOper: Energy-efficient and Responsive Concurrent DNN Inference on Mobile Devices
View PDF HTML (experimental)Abstract:Deep neural network (DNN) has driven extensive applications in mobile technology. However, for long-running mobile apps like voice assistants or video applications on smartphones, energy efficiency is critical for battery-powered devices. The rise of heterogeneous processors in mobile devices today has introduced new challenges for optimizing energy efficiency. Our key insight is that partitioning computations across different processors for parallelism and speedup doesn't necessarily correlate with energy consumption optimization and may even increase it. To address this, we present AdaOper, an energy-efficient concurrent DNN inference system. It optimizes energy efficiency on mobile heterogeneous processors while maintaining responsiveness. AdaOper includes a runtime energy profiler that dynamically adjusts operator partitioning to optimize energy efficiency based on dynamic device conditions. We conduct preliminary experiments, which show that AdaOper reduces energy consumption by 16.88% compared to the existing concurrent method while ensuring real-time performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.