Computer Science > Information Retrieval
[Submitted on 23 Apr 2024]
Title:A Reproducibility Study of PLAID
View PDF HTML (experimental)Abstract:The PLAID (Performance-optimized Late Interaction Driver) algorithm for ColBERTv2 uses clustered term representations to retrieve and progressively prune documents for final (exact) document scoring. In this paper, we reproduce and fill in missing gaps from the original work. By studying the parameters PLAID introduces, we find that its Pareto frontier is formed of a careful balance among its three parameters; deviations beyond the suggested settings can substantially increase latency without necessarily improving its effectiveness. We then compare PLAID with an important baseline missing from the paper: re-ranking a lexical system. We find that applying ColBERTv2 as a re-ranker atop an initial pool of BM25 results provides better efficiency-effectiveness trade-offs in low-latency settings. However, re-ranking cannot reach peak effectiveness at higher latency settings due to limitations in recall of lexical matching and provides a poor approximation of an exhaustive ColBERTv2 search. We find that recently proposed modifications to re-ranking that pull in the neighbors of top-scoring documents overcome this limitation, providing a Pareto frontier across all operational points for ColBERTv2 when evaluated using a well-annotated dataset. Curious about why re-ranking methods are highly competitive with PLAID, we analyze the token representation clusters PLAID uses for retrieval and find that most clusters are predominantly aligned with a single token and vice versa. Given the competitive trade-offs that re-ranking baselines exhibit, this work highlights the importance of carefully selecting pertinent baselines when evaluating the efficiency of retrieval engines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.