Quantum Physics
[Submitted on 17 Apr 2024]
Title:Neural Network Approach for Non-Markovian Dissipative Dynamics of Many-Body Open Quantum Systems
View PDF HTML (experimental)Abstract:Simulating the dynamics of open quantum systems coupled to non-Markovian environments remains an outstanding challenge due to exponentially scaling computational costs. We present an artificial intelligence strategy to overcome this obstacle by integrating the neural quantum states approach into the dissipaton-embedded quantum master equation in second quantization (DQME-SQ). Our approach utilizes restricted Boltzmann machines (RBMs) to compactly represent the reduced density tensor, explicitly encoding the combined effects of system-environment correlations and nonMarkovian memory. Applied to model systems exhibiting prominent effects of system-environment correlation and non-Markovian memory, our approach achieves comparable accuracy to conventional hierarchical equations of motion, while requiring significantly fewer dynamical variables. The novel RBM-based DQME-SQ approach paves the way for investigating non-Markovian open quantum dynamics in previously intractable regimes, with implications spanning various frontiers of modern science.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.