Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Apr 2024 (v1), last revised 3 Sep 2024 (this version, v2)]
Title:The Impact of Print-Scanning in Heterogeneous Morph Evaluation Scenarios
View PDF HTML (experimental)Abstract:Face morphing attacks pose an increasing threat to face recognition (FR) systems. A morphed photo contains biometric information from two different subjects to take advantage of vulnerabilities in FRs. These systems are particularly susceptible to attacks when the morphs are subjected to print-scanning to mask the artifacts generated during the morphing process. We investigate the impact of print-scanning on morphing attack detection through a series of evaluations on heterogeneous morphing attack scenarios. Our experiments show that we can increase the Mated Morph Presentation Match Rate (MMPMR) by up to 8.48%. Furthermore, when a Single-image Morphing Attack Detection (S-MAD) algorithm is not trained to detect print-scanned morphs the Morphing Attack Classification Error Rate (MACER) can increase by up to 96.12%, indicating significant vulnerability.
Submission history
From: Richard Neddo Jr. [view email][v1] Tue, 9 Apr 2024 18:23:34 UTC (2,148 KB)
[v2] Tue, 3 Sep 2024 01:57:04 UTC (3,626 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.