Computer Science > Artificial Intelligence
[Submitted on 5 Apr 2024 (v1), last revised 22 Apr 2024 (this version, v2)]
Title:Random Walk in Random Permutation Set Theory
View PDF HTML (experimental)Abstract:Random walk is an explainable approach for modeling natural processes at the molecular level. The Random Permutation Set Theory (RPST) serves as a framework for uncertainty reasoning, extending the applicability of Dempster-Shafer Theory. Recent explorations indicate a promising link between RPST and random walk. In this study, we conduct an analysis and construct a random walk model based on the properties of RPST, with Monte Carlo simulations of such random walk. Our findings reveal that the random walk generated through RPST exhibits characteristics similar to those of a Gaussian random walk and can be transformed into a Wiener process through a specific limiting scaling procedure. This investigation establishes a novel connection between RPST and random walk theory, thereby not only expanding the applicability of RPST, but also demonstrating the potential for combining the strengths of both approaches to improve problem-solving abilities.
Submission history
From: Jiefeng Zhou [view email][v1] Fri, 5 Apr 2024 09:19:55 UTC (3,240 KB)
[v2] Mon, 22 Apr 2024 15:18:14 UTC (3,241 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.