Computer Science > Computation and Language
[Submitted on 26 Mar 2024 (v1), last revised 2 Nov 2024 (this version, v2)]
Title:COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning
View PDF HTML (experimental)Abstract:Remarkable progress on English instruction tuning has facilitated the efficacy and reliability of large language models (LLMs). However, there remains a noticeable gap in instruction tuning for Chinese, where the complex linguistic features pose significant challenges. Existing datasets, generally distilled from English-centric LLMs, are not well-aligned with Chinese users' interaction patterns. To bridge this gap, we introduce COIG-CQIA, a new Chinese instruction tuning dataset derived from various real-world resources and undergoing rigorous human verification. We conduct extensive experiments on COIG-CQIA, and compare them with strong baseline models and datasets. The experimental results show that models trained on COIG-CQIA achieve highly competitive performance in diverse benchmarks. Additionally, our findings offer several insights for designing effective Chinese instruction-tuning datasets and data-mixing strategies. Our dataset are available at this https URL.
Submission history
From: Yuelin Bai [view email][v1] Tue, 26 Mar 2024 19:24:18 UTC (7,301 KB)
[v2] Sat, 2 Nov 2024 11:08:49 UTC (2,253 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.