Computer Science > Machine Learning
[Submitted on 26 Mar 2024 (v1), last revised 28 Mar 2024 (this version, v2)]
Title:On permutation-invariant neural networks
View PDF HTML (experimental)Abstract:Conventional machine learning algorithms have traditionally been designed under the assumption that input data follows a vector-based format, with an emphasis on vector-centric paradigms. However, as the demand for tasks involving set-based inputs has grown, there has been a paradigm shift in the research community towards addressing these challenges. In recent years, the emergence of neural network architectures such as Deep Sets and Transformers has presented a significant advancement in the treatment of set-based data. These architectures are specifically engineered to naturally accommodate sets as input, enabling more effective representation and processing of set structures. Consequently, there has been a surge of research endeavors dedicated to exploring and harnessing the capabilities of these architectures for various tasks involving the approximation of set functions. This comprehensive survey aims to provide an overview of the diverse problem settings and ongoing research efforts pertaining to neural networks that approximate set functions. By delving into the intricacies of these approaches and elucidating the associated challenges, the survey aims to equip readers with a comprehensive understanding of the field. Through this comprehensive perspective, we hope that researchers can gain valuable insights into the potential applications, inherent limitations, and future directions of set-based neural networks. Indeed, from this survey we gain two insights: i) Deep Sets and its variants can be generalized by differences in the aggregation function, and ii) the behavior of Deep Sets is sensitive to the choice of the aggregation function. From these observations, we show that Deep Sets, one of the well-known permutation-invariant neural networks, can be generalized in the sense of a quasi-arithmetic mean.
Submission history
From: Masanari Kimura [view email][v1] Tue, 26 Mar 2024 06:06:01 UTC (2,209 KB)
[v2] Thu, 28 Mar 2024 22:28:02 UTC (2,209 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.