Computer Science > Databases
[Submitted on 24 Mar 2024]
Title:On Reporting Durable Patterns in Temporal Proximity Graphs
View PDF HTML (experimental)Abstract:Finding patterns in graphs is a fundamental problem in databases and data mining. In many applications, graphs are temporal and evolve over time, so we are interested in finding durable patterns, such as triangles and paths, which persist over a long time. While there has been work on finding durable simple patterns, existing algorithms do not have provable guarantees and run in strictly super-linear time. The paper leverages the observation that many graphs arising in practice are naturally proximity graphs or can be approximated as such, where nodes are embedded as points in some high-dimensional space, and two nodes are connected by an edge if they are close to each other. We work with an implicit representation of the proximity graph, where nodes are additionally annotated by time intervals, and design near-linear-time algorithms for finding (approximately) durable patterns above a given durability threshold. We also consider an interactive setting where a client experiments with different durability thresholds in a sequence of queries; we show how to compute incremental changes to result patterns efficiently in time near-linear to the size of the changes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.