Computer Science > Computation and Language
[Submitted on 27 Feb 2024]
Title:Unsupervised multiple choices question answering via universal corpus
View PDF HTML (experimental)Abstract:Unsupervised question answering is a promising yet challenging task, which alleviates the burden of building large-scale annotated data in a new domain. It motivates us to study the unsupervised multiple-choice question answering (MCQA) problem. In this paper, we propose a novel framework designed to generate synthetic MCQA data barely based on contexts from the universal domain without relying on any form of manual annotation. Possible answers are extracted and used to produce related questions, then we leverage both named entities (NE) and knowledge graphs to discover plausible distractors to form complete synthetic samples. Experiments on multiple MCQA datasets demonstrate the effectiveness of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.