Computer Science > Information Retrieval
[Submitted on 29 Jan 2024 (v1), last revised 17 Oct 2024 (this version, v2)]
Title:NFT1000: A Cross-Modal Dataset for Non-Fungible Token Retrieval
View PDF HTML (experimental)Abstract:With the rise of "Metaverse" and "Web 3.0", Non-Fungible Token (NFT) has emerged as a kind of pivotal digital asset, garnering significant attention. By the end of March 2024, more than 1.7 billion NFTs have been minted across various blockchain platforms. To effectively locate a desired NFT, conducting searches within a vast array of NFTs is essential. The challenge in NFT retrieval is heightened due to the high degree of similarity among different NFTs, regarding regional and semantic aspects. In this paper, we will introduce a benchmark dataset named "NFT Top1000 Visual-Text Dataset" (NFT1000), containing 7.56 million image-text pairs, and being collected from 1000 most famous PFP1 NFT collections2 by sales volume on the Ethereum blockchain. Based on this dataset and leveraging the CLIP series of pre-trained models as our foundation, we propose the dynamic masking fine-tuning scheme. This innovative approach results in a 7.4\% improvement in the top1 accuracy rate, while utilizing merely 13\% of the total training data (0.79 million vs. 6.1 million). We also propose a robust metric Comprehensive Variance Index (CVI) to assess the similarity and retrieval difficulty of visual-text pairs data. The dataset will be released as an open-source resource. For more details, please refer to: this https URL.
Submission history
From: Shuxun Wang [view email][v1] Mon, 29 Jan 2024 03:30:15 UTC (21,708 KB)
[v2] Thu, 17 Oct 2024 02:53:23 UTC (25,797 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.