Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Jan 2024]
Title:Representation Learning on Event Stream via an Elastic Net-incorporated Tensor Network
View PDFAbstract:Event cameras are neuromorphic sensors that capture asynchronous and sparse event stream when per-pixel brightness changes. The state-of-the-art processing methods for event signals typically aggregate events into a frame or a grid. However, events are dense in time, these works are limited to local information of events due to the stacking. In this paper, we present a novel spatiotemporal representation learning method which can capture the global correlations of all events in the event stream simultaneously by tensor decomposition. In addition, with the events are sparse in space, we propose an Elastic Net-incorporated tensor network (ENTN) model to obtain more spatial and temporal details about event stream. Empirically, the results indicate that our method can represent the spatiotemporal correlation of events with high quality, and can achieve effective results in applications like filtering noise compared with the state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.