Computer Science > Artificial Intelligence
[Submitted on 19 Dec 2023]
Title:Vertical Symbolic Regression
View PDF HTML (experimental)Abstract:Automating scientific discovery has been a grand goal of Artificial Intelligence (AI) and will bring tremendous societal impact. Learning symbolic expressions from experimental data is a vital step in AI-driven scientific discovery. Despite exciting progress, most endeavors have focused on the horizontal discovery paths, i.e., they directly search for the best expression in the full hypothesis space involving all the independent variables. Horizontal paths are challenging due to the exponentially large hypothesis space involving all the independent variables. We propose Vertical Symbolic Regression (VSR) to expedite symbolic regression. The VSR starts by fitting simple expressions involving a few independent variables under controlled experiments where the remaining variables are held constant. It then extends the expressions learned in previous rounds by adding new independent variables and using new control variable experiments allowing these variables to vary. The first few steps in vertical discovery are significantly cheaper than the horizontal path, as their search is in reduced hypothesis spaces involving a small set of variables. As a consequence, vertical discovery has the potential to supercharge state-of-the-art symbolic regression approaches in handling complex equations with many contributing factors. Theoretically, we show that the search space of VSR can be exponentially smaller than that of horizontal approaches when learning a class of expressions. Experimentally, VSR outperforms several baselines in learning symbolic expressions involving many independent variables.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.