Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Dec 2023]
Title:Enhancing Kinship Verification through Multiscale Retinex and Combined Deep-Shallow features
View PDF HTML (experimental)Abstract:The challenge of kinship verification from facial images represents a cutting-edge and formidable frontier in the realms of pattern recognition and computer vision. This area of study holds a myriad of potential applications, spanning from image annotation and forensic analysis to social media research. Our research stands out by integrating a preprocessing method named Multiscale Retinex (MSR), which elevates image quality and amplifies contrast, ultimately bolstering the end results. Strategically, our methodology capitalizes on the harmonious blend of deep and shallow texture descriptors, merging them proficiently at the score level through the Logistic Regression (LR) method. To elucidate, we employ the Local Phase Quantization (LPQ) descriptor to extract shallow texture characteristics. For deep feature extraction, we turn to the prowess of the VGG16 model, which is pre-trained on a convolutional neural network (CNN). The robustness and efficacy of our method have been put to the test through meticulous experiments on three rigorous kinship datasets, namely: Cornell Kin Face, UB Kin Face, and TS Kin Face.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.