Electrical Engineering and Systems Science > Systems and Control
[Submitted on 23 Nov 2023 (v1), last revised 14 Jun 2024 (this version, v5)]
Title:An Efficient Distributed Nash Equilibrium Seeking with Compressed and Event-triggered Communication
View PDF HTML (experimental)Abstract:Distributed Nash equilibrium (NE) seeking problems for networked games have been widely investigated in recent years. Despite the increasing attention, communication expenditure is becoming a major bottleneck for scaling up distributed approaches within limited communication bandwidth between agents. To reduce communication cost, an efficient distributed NE seeking (ETC-DNES) algorithm is proposed to obtain an NE for games over directed graphs, where the communication efficiency is improved by event-triggered exchanges of compressed information among neighbors. ETC-DNES saves communication costs in both transmitted bits and rounds of communication. Furthermore, our method only requires the row-stochastic property of the adjacency matrix, unlike previous approaches that hinged on doubly-stochastic communication matrices. We provide convergence guarantees for ETC-DNES on games with restricted strongly monotone mappings and testify its efficiency with no sacrifice on the accuracy. The algorithm and analysis are extended to a compressed algorithm with stochastic event-triggered mechanism (SETC-DNES). In SETC-DNES, we introduce a random variable in the triggering condition to further enhance algorithm efficiency. We demonstrate that SETC-DNES guarantees linear convergence to the NE while achieving even greater reductions in communication costs compared to ETC-DNES. Finally, numerical simulations illustrate the effectiveness of the proposed algorithms.
Submission history
From: Xiaomeng Chen [view email][v1] Thu, 23 Nov 2023 13:23:40 UTC (1,280 KB)
[v2] Mon, 27 Nov 2023 05:35:31 UTC (1,039 KB)
[v3] Wed, 29 Nov 2023 08:00:53 UTC (1,791 KB)
[v4] Thu, 30 Nov 2023 12:02:57 UTC (1,791 KB)
[v5] Fri, 14 Jun 2024 12:22:13 UTC (599 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.