Computer Science > Human-Computer Interaction
[Submitted on 18 Nov 2023]
Title:Engage Wider Audience or Facilitate Quality Answers? a Mixed-methods Analysis of Questioning Strategies for Research Sensemaking on a Community Q&A Site
View PDFAbstract:Discussing research-sensemaking questions on Community Question and Answering (CQA) platforms has been an increasingly common practice for the public to participate in science communication. Nonetheless, how users strategically craft research-sensemaking questions to engage public participation and facilitate knowledge construction is a significant yet less understood problem. To fill this gap, we collected 837 science-related questions and 157,684 answers from Zhihu, and conducted a mixed-methods study to explore user-developed strategies in proposing research-sensemaking questions, and their potential effects on public engagement and knowledge construction. Through open coding, we captured a comprehensive taxonomy of question-crafting strategies, such as eyecatching narratives with counter-intuitive claims and rigorous descriptions with data use. Regression analysis indicated that these strategies correlated with user engagement and answer construction in different ways (e.g., emotional questions attracted more views and answers), yet there existed a general divergence between wide participation and quality knowledge establishment, when most questioning strategies could not ensure both. Based on log analysis, we further found that collaborative editing afforded unique values in refining research-sensemaking questions regarding accuracy, rigor, comprehensiveness and attractiveness. We propose design implications to facilitate accessible, accurate and engaging science communication on CQA platforms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.