Computer Science > Machine Learning
[Submitted on 7 Nov 2023 (v1), last revised 1 Apr 2024 (this version, v2)]
Title:Improved weight initialization for deep and narrow feedforward neural network
View PDF HTML (experimental)Abstract:Appropriate weight initialization settings, along with the ReLU activation function, have become cornerstones of modern deep learning, enabling the training and deployment of highly effective and efficient neural network models across diverse areas of artificial intelligence. The problem of \textquotedblleft dying ReLU," where ReLU neurons become inactive and yield zero output, presents a significant challenge in the training of deep neural networks with ReLU activation function. Theoretical research and various methods have been introduced to address the problem. However, even with these methods and research, training remains challenging for extremely deep and narrow feedforward networks with ReLU activation function. In this paper, we propose a novel weight initialization method to address this issue. We establish several properties of our initial weight matrix and demonstrate how these properties enable the effective propagation of signal vectors. Through a series of experiments and comparisons with existing methods, we demonstrate the effectiveness of the novel initialization method.
Submission history
From: Hyunwoo Lee [view email][v1] Tue, 7 Nov 2023 05:28:12 UTC (3,780 KB)
[v2] Mon, 1 Apr 2024 09:05:20 UTC (4,031 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.