Statistics > Machine Learning
[Submitted on 2 Nov 2023 (v1), last revised 18 Jan 2024 (this version, v3)]
Title:Upper and lower bounds for the Lipschitz constant of random neural networks
View PDFAbstract:Empirical studies have widely demonstrated that neural networks are highly sensitive to small, adversarial perturbations of the input. The worst-case robustness against these so-called adversarial examples can be quantified by the Lipschitz constant of the neural network. In this paper, we study upper and lower bounds for the Lipschitz constant of random ReLU neural networks. Specifically, we assume that the weights and biases follow a generalization of the He initialization, where general symmetric distributions for the biases are permitted. For shallow neural networks, we characterize the Lipschitz constant up to an absolute numerical constant. For deep networks with fixed depth and sufficiently large width, our established upper bound is larger than the lower bound by a factor that is logarithmic in the width.
Submission history
From: Paul Geuchen [view email][v1] Thu, 2 Nov 2023 16:03:26 UTC (85 KB)
[v2] Fri, 1 Dec 2023 17:40:35 UTC (101 KB)
[v3] Thu, 18 Jan 2024 14:39:26 UTC (68 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.