Computer Science > Computation and Language
[Submitted on 3 Oct 2023]
Title:What's Next in Affective Modeling? Large Language Models
View PDFAbstract:Large Language Models (LLM) have recently been shown to perform well at various tasks from language understanding, reasoning, storytelling, and information search to theory of mind. In an extension of this work, we explore the ability of GPT-4 to solve tasks related to emotion prediction. GPT-4 performs well across multiple emotion tasks; it can distinguish emotion theories and come up with emotional stories. We show that by prompting GPT-4 to identify key factors of an emotional experience, it is able to manipulate the emotional intensity of its own stories. Furthermore, we explore GPT-4's ability on reverse appraisals by asking it to predict either the goal, belief, or emotion of a person using the other two. In general, GPT-4 can make the correct inferences. We suggest that LLMs could play an important role in affective modeling; however, they will not fully replace works that attempt to model the mechanisms underlying emotion-related processes.
Submission history
From: Nutchanon Yongsatianchot [view email][v1] Tue, 3 Oct 2023 16:39:20 UTC (102 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.