Computer Science > Robotics
[Submitted on 19 Sep 2023 (v1), last revised 25 Dec 2024 (this version, v2)]
Title:HAS-RRT: RRT-based Motion Planning using Topological Guidance
View PDF HTML (experimental)Abstract:We present a hierarchical RRT-based motion planning strategy, Hierarchical Annotated-Skeleton Guided RRT (HAS-RRT), guided by a workspace skeleton, to solve motion planning problems. HAS-RRT provides up to a 91% runtime reduction and builds a tree at least 30% smaller than competitors while still finding competitive-cost paths. This is because our strategy prioritizes paths indicated by the workspace guidance to efficiently find a valid motion plan for the robot. Existing methods either rely too heavily on workspace guidance or have difficulty finding narrow passages. By taking advantage of the assumptions that the workspace skeleton provides, HAS-RRT is able to build a smaller tree and find a path faster than its competitors. Additionally, we show that HAS-RRT is robust to the quality of workspace guidance provided and that, in a worst-case scenario where the workspace skeleton provides no additional insight, our method performs comparably to an unguided method.
Submission history
From: Ananya Yammanuru [view email][v1] Tue, 19 Sep 2023 17:46:36 UTC (3,645 KB)
[v2] Wed, 25 Dec 2024 15:39:35 UTC (5,859 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.