Computer Science > Information Retrieval
[Submitted on 19 Sep 2023]
Title:RUEL: Retrieval-Augmented User Representation with Edge Browser Logs for Sequential Recommendation
View PDFAbstract:Online recommender systems (RS) aim to match user needs with the vast amount of resources available on various platforms. A key challenge is to model user preferences accurately under the condition of data sparsity. To address this challenge, some methods have leveraged external user behavior data from multiple platforms to enrich user representation. However, all of these methods require a consistent user ID across platforms and ignore the information from similar users. In this study, we propose RUEL, a novel retrieval-based sequential recommender that can effectively incorporate external anonymous user behavior data from Edge browser logs to enhance recommendation. We first collect and preprocess a large volume of Edge browser logs over a one-year period and link them to target entities that correspond to candidate items in recommendation datasets. We then design a contrastive learning framework with a momentum encoder and a memory bank to retrieve the most relevant and diverse browsing sequences from the full browsing log based on the semantic similarity between user representations. After retrieval, we apply an item-level attentive selector to filter out noisy items and generate refined sequence embeddings for the final predictor. RUEL is the first method that connects user browsing data with typical recommendation datasets and can be generalized to various recommendation scenarios and datasets. We conduct extensive experiments on four real datasets for sequential recommendation tasks and demonstrate that RUEL significantly outperforms state-of-the-art baselines. We also conduct ablation studies and qualitative analysis to validate the effectiveness of each component of RUEL and provide additional insights into our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.