Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Sep 2023]
Title:AnyOKP: One-Shot and Instance-Aware Object Keypoint Extraction with Pretrained ViT
View PDFAbstract:Towards flexible object-centric visual perception, we propose a one-shot instance-aware object keypoint (OKP) extraction approach, AnyOKP, which leverages the powerful representation ability of pretrained vision transformer (ViT), and can obtain keypoints on multiple object instances of arbitrary category after learning from a support image. An off-the-shelf petrained ViT is directly deployed for generalizable and transferable feature extraction, which is followed by training-free feature enhancement. The best-prototype pairs (BPPs) are searched for in support and query images based on appearance similarity, to yield instance-unaware candidate this http URL, the entire graph with all candidate keypoints as vertices are divided to sub-graphs according to the feature distributions on the graph edges. Finally, each sub-graph represents an object instance. AnyOKP is evaluated on real object images collected with the cameras of a robot arm, a mobile robot, and a surgical robot, which not only demonstrates the cross-category flexibility and instance awareness, but also show remarkable robustness to domain shift and viewpoint change.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.