Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Sep 2023]
Title:Iterative Superquadric Recomposition of 3D Objects from Multiple Views
View PDFAbstract:Humans are good at recomposing novel objects, i.e. they can identify commonalities between unknown objects from general structure to finer detail, an ability difficult to replicate by machines. We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views without training a model that uses 3D supervision. To achieve this, we optimize the superquadric parameters that compose a specific instance of the object, comparing its rendered 3D view and 2D image silhouette. Our ISCO framework iteratively adds new superquadrics wherever the reconstruction error is high, abstracting first coarse regions and then finer details of the target object. With this simple coarse-to-fine inductive bias, ISCO provides consistent superquadrics for related object parts, despite not having any semantic supervision. Since ISCO does not train any neural network, it is also inherently robust to out-of-distribution objects. Experiments show that, compared to recent single instance superquadrics reconstruction approaches, ISCO provides consistently more accurate 3D reconstructions, even from images in the wild. Code available at this https URL .
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.