Computer Science > Artificial Intelligence
[Submitted on 28 Aug 2023]
Title:Utilizing Mood-Inducing Background Music in Human-Robot Interaction
View PDFAbstract:Past research has clearly established that music can affect mood and that mood affects emotional and cognitive processing, and thus decision-making. It follows that if a robot interacting with a person needs to predict the person's behavior, knowledge of the music the person is listening to when acting is a potentially relevant feature. To date, however, there has not been any concrete evidence that a robot can improve its human-interactive decision-making by taking into account what the person is listening to. This research fills this gap by reporting the results of an experiment in which human participants were required to complete a task in the presence of an autonomous agent while listening to background music. Specifically, the participants drove a simulated car through an intersection while listening to music. The intersection was not empty, as another simulated vehicle, controlled autonomously, was also crossing the intersection in a different direction. Our results clearly indicate that such background information can be effectively incorporated in an agent's world representation in order to better predict people's behavior. We subsequently analyze how knowledge of music impacted both participant behavior and the resulting learned policy.\setcounter{footnote}{2}\footnote{An earlier version of part of the material in this paper appeared originally in the first author's Ph.D. Dissertation~\cite{liebman2020sequential} but it has not appeared in any pear-reviewed conference or journal.}
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.