Mathematics > Optimization and Control
[Submitted on 27 Aug 2023]
Title:Data-Driven Robust Control Using Prediction Error Bounds Based on Perturbation Analysis
View PDFAbstract:For linear systems, many data-driven control methods rely on the behavioral framework, using historical data of the system to predict the future trajectories. However, measurement noise introduces errors in predictions. When the noise is bounded, we propose a method for designing historical experiments that enable the computation of an upper bound on the prediction error. This approach allows us to formulate a minimax control problem where robust constraint satisfaction is enforced. We derive an upper bound on the suboptimality gap of the resulting control input sequence compared to optimal control utilizing accurate measurements. As demonstrated in numerical experiments, the solution derived by our method can achieve constraint satisfaction and a small suboptimality gap despite the measurement noise.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.