Computer Science > Networking and Internet Architecture
[Submitted on 26 Jun 2023 (v1), last revised 9 Nov 2023 (this version, v2)]
Title:Sustainable RF Wireless Energy Transfer for Massive IoT: enablers and challenges
View PDFAbstract:Reliable energy supply remains a crucial challenge in the Internet of Things (IoT). Although relying on batteries is cost-effective for a few devices, it is neither a scalable nor a sustainable charging solution as the network grows massive. Besides, current energy-saving technologies alone cannot cope, for instance, with the vision of zero-energy devices and the deploy-and-forget paradigm which can unlock a myriad of new use cases. In this context, sustainable radio frequency wireless energy transfer emerges as an attractive solution for efficiently charging the next generation of ultra low power IoT devices. Herein, we highlight that sustainable charging is broader than conventional green charging, as it focuses on balancing economy prosperity and social equity in addition to environmental health. We discuss the economic implications of powering energy transmitters with ambient energy sources, and reveal insights on their optimal deployment. Moreover, we overview different methods for modeling the energy arrival process of ambient energy sources and discuss their application in different use cases. We highlight the potential of integrating sustainable WET with energy harvesting from nearby transmitters and discuss enhancements in energy receiver design. We also illustrate the role of different technologies in enabling sustainable WET and exemplify various use cases. Besides, we reveal insights into low-complexity architectures designed at the energy transmitters. We highlight relevant research challenges and candidate solutions.
Submission history
From: Osmel Martínez Rosabal [view email][v1] Mon, 26 Jun 2023 20:15:45 UTC (1,985 KB)
[v2] Thu, 9 Nov 2023 11:04:20 UTC (1,674 KB)
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.