Computer Science > Computers and Society
[Submitted on 17 May 2023]
Title:Towards High-Value Datasets determination for data-driven development: a systematic literature review
View PDFAbstract:The OGD is seen as a political and socio-economic phenomenon that promises to promote civic engagement and stimulate public sector innovations in various areas of public life. To bring the expected benefits, data must be reused and transformed into value-added products or services. This, in turn, sets another precondition for data that are expected to not only be available and comply with open data principles, but also be of value, i.e., of interest for reuse by the end-user. This refers to the notion of 'high-value dataset' (HVD), recognized by the European Data Portal as a key trend in the OGD area in 2022. While there is a progress in this direction, e.g., the Open Data Directive, incl. identifying 6 key categories, a list of HVDs and arrangements for their publication and re-use, they can be seen as 'core' / 'base' datasets aimed at increasing interoperability of public sector data with a high priority, contributing to the development of a more mature OGD initiative. Depending on the specifics of a region and country - geographical location, social, environmental, economic issues, cultural characteristics, (under)developed sectors and market specificities, more datasets can be recognized as of high value for a particular country. However, there is no standardized approach to assist chief data officers in this. In this paper, we present a systematic review of existing literature on the HVD determination, which is expected to form an initial knowledge base for this process, incl. used approaches and indicators to determine them, data, stakeholders.
Submission history
From: Anastasija Nikiforova [view email][v1] Wed, 17 May 2023 14:22:02 UTC (477 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.