Computer Science > Computer Science and Game Theory
[Submitted on 2 May 2023]
Title:Guaranteeing Envy-Freeness under Generalized Assignment Constraints
View PDFAbstract:We study fair division of goods under the broad class of generalized assignment constraints. In this constraint framework, the sizes and values of the goods are agent-specific, and one needs to allocate the goods among the agents fairly while further ensuring that each agent receives a bundle of total size at most the corresponding budget of the agent. Since, in such a constraint setting, it may not always be feasible to partition all the goods among the agents, we conform -- as in recent works -- to the construct of charity to designate the set of unassigned goods. For this allocation framework, we obtain existential and computational guarantees for envy-free (appropriately defined) allocation of divisible and indivisible goods, respectively, among agents with individual, additive valuations for the goods.
We deem allocations to be fair by evaluating envy only with respect to feasible subsets. In particular, an allocation is said to be feasibly envy-free (FEF) iff each agent prefers its bundle over every (budget) feasible subset within any other agent's bundle (and within the charity). The current work establishes that, for divisible goods, FEF allocations are guaranteed to exist and can be computed efficiently under generalized assignment constraints.
In the context of indivisible goods, FEF allocations do not necessarily exist, and hence, we consider the fairness notion of feasible envy-freeness up to any good (FEFx). We show that, under generalized assignment constraints, an FEFx allocation of indivisible goods always exists. In fact, our FEFx result resolves open problems posed in prior works. Further, for indivisible goods and under generalized assignment constraints, we provide a pseudo-polynomial time algorithm for computing FEFx allocations, and a fully polynomial-time approximation scheme (FPTAS) for computing approximate FEFx allocations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.