Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Apr 2023]
Title:A Byte Sequence is Worth an Image: CNN for File Fragment Classification Using Bit Shift and n-Gram Embeddings
View PDFAbstract:File fragment classification (FFC) on small chunks of memory is essential in memory forensics and Internet security. Existing methods mainly treat file fragments as 1d byte signals and utilize the captured inter-byte features for classification, while the bit information within bytes, i.e., intra-byte information, is seldom considered. This is inherently inapt for classifying variable-length coding files whose symbols are represented as the variable number of bits. Conversely, we propose Byte2Image, a novel data augmentation technique, to introduce the neglected intra-byte information into file fragments and re-treat them as 2d gray-scale images, which allows us to capture both inter-byte and intra-byte correlations simultaneously through powerful convolutional neural networks (CNNs). Specifically, to convert file fragments to 2d images, we employ a sliding byte window to expose the neglected intra-byte information and stack their n-gram features row by row. We further propose a byte sequence \& image fusion network as a classifier, which can jointly model the raw 1d byte sequence and the converted 2d image to perform FFC. Experiments on FFT-75 dataset validate that our proposed method can achieve notable accuracy improvements over state-of-the-art methods in nearly all scenarios. The code will be released at this https URL.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.