Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Apr 2023]
Title:PSLT: A Light-weight Vision Transformer with Ladder Self-Attention and Progressive Shift
View PDFAbstract:Vision Transformer (ViT) has shown great potential for various visual tasks due to its ability to model long-range dependency. However, ViT requires a large amount of computing resource to compute the global self-attention. In this work, we propose a ladder self-attention block with multiple branches and a progressive shift mechanism to develop a light-weight transformer backbone that requires less computing resources (e.g. a relatively small number of parameters and FLOPs), termed Progressive Shift Ladder Transformer (PSLT). First, the ladder self-attention block reduces the computational cost by modelling local self-attention in each branch. In the meanwhile, the progressive shift mechanism is proposed to enlarge the receptive field in the ladder self-attention block by modelling diverse local self-attention for each branch and interacting among these branches. Second, the input feature of the ladder self-attention block is split equally along the channel dimension for each branch, which considerably reduces the computational cost in the ladder self-attention block (with nearly 1/3 the amount of parameters and FLOPs), and the outputs of these branches are then collaborated by a pixel-adaptive fusion. Therefore, the ladder self-attention block with a relatively small number of parameters and FLOPs is capable of modelling long-range interactions. Based on the ladder self-attention block, PSLT performs well on several vision tasks, including image classification, objection detection and person re-identification. On the ImageNet-1k dataset, PSLT achieves a top-1 accuracy of 79.9% with 9.2M parameters and 1.9G FLOPs, which is comparable to several existing models with more than 20M parameters and 4G FLOPs. Code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.