Computer Science > Machine Learning
[Submitted on 20 Mar 2023]
Title:Fairness-Aware Graph Filter Design
View PDFAbstract:Graphs are mathematical tools that can be used to represent complex real-world systems, such as financial markets and social networks. Hence, machine learning (ML) over graphs has attracted significant attention recently. However, it has been demonstrated that ML over graphs amplifies the already existing bias towards certain under-represented groups in various decision-making problems due to the information aggregation over biased graph structures. Faced with this challenge, in this paper, we design a fair graph filter that can be employed in a versatile manner for graph-based learning tasks. The design of the proposed filter is based on a bias analysis and its optimality in mitigating bias compared to its fairness-agnostic counterpart is established. Experiments on real-world networks for node classification demonstrate the efficacy of the proposed filter design in mitigating bias, while attaining similar utility and better stability compared to baseline algorithms.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.