Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 21 Feb 2023]
Title:Single Event Effects Assessment of UltraScale+ MPSoC Systems under Atmospheric Radiation
View PDFAbstract:The AMD UltraScale+ XCZU9EG device is a Multi-Processor System-on-Chip (MPSoC) with embedded Programmable Logic (PL) that excels in many Edge (e.g., automotive or avionics) and Cloud (e.g., data centres) terrestrial applications. However, it incorporates a large amount of SRAM cells, making the device vulnerable to Neutron-induced Single Event Upsets (NSEUs) or otherwise soft errors. Semiconductor vendors incorporate soft error mitigation mechanisms to recover memory upsets (i.e., faults) before they propagate to the application output and become an error. But how effective are the MPSoC's mitigation schemes? Can they effectively recover upsets in high altitude or large scale applications under different workloads? This article answers the above research questions through a solid study that entails accelerated neutron radiation testing and dependability analysis. We test the device on a broad range of workloads, like multi-threaded software used for pose estimation and weather prediction or a software/hardware (SW/HW) co-design image classification application running on the AMD Deep Learning Processing Unit (DPU). Assuming a one-node MPSoC system in New York City (NYC) at 40k feet, all tested software applications achieve a Mean Time To Failure (MTTF) greater than 148 months, which shows that upsets are effectively recovered in the processing system of the MPSoC. However, the SW/HW co-design (i.e., DPU) in the same one-node system at 40k feet has an MTTF = 4 months due to the high failure rate of its PL accelerator, which emphasises that some MPSoC workloads may require additional NSEU mitigation schemes. Nevertheless, we show that the MTTF of the DPU can increase to 87 months without any overhead if one disregards the failure rate of tolerable errors since they do not affect the correctness of the classification output.
Submission history
From: Dimitrios Agiakatsikas [view email][v1] Tue, 21 Feb 2023 11:56:03 UTC (16,512 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.