Computer Science > Machine Learning
[Submitted on 9 Mar 2023]
Title:Beware of Instantaneous Dependence in Reinforcement Learning
View PDFAbstract:Playing an important role in Model-Based Reinforcement Learning (MBRL), environment models aim to predict future states based on the past. Existing works usually ignore instantaneous dependence in the state, that is, assuming that the future state variables are conditionally independent given the past states. However, instantaneous dependence is prevalent in many RL environments. For instance, in the stock market, instantaneous dependence can exist between two stocks because the fluctuation of one stock can quickly affect the other and the resolution of price change is lower than that of the effect. In this paper, we prove that with few exceptions, ignoring instantaneous dependence can result in suboptimal policy learning in MBRL. To address the suboptimality problem, we propose a simple plug-and-play method to enable existing MBRL algorithms to take instantaneous dependence into account. Through experiments on two benchmarks, we (1) confirm the existence of instantaneous dependence with visualization; (2) validate our theoretical findings that ignoring instantaneous dependence leads to suboptimal policy; (3) verify that our method effectively enables reinforcement learning with instantaneous dependence and improves policy performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.